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Abstract 
Consider the problem of sharing a wireless channel between a set of computer nodes. Hidden nodes exist and 
there is no base station. Each computer node hosts a set of sporadic message streams where a message stream 
releases messages with real-time deadlines. We propose a collision-free wireless medium access control 
(MAC) protocol which implements static-priority scheduling. The MAC protocol allows multiple masters 
and is fully distributed. It neither relies on synchronized clocks nor out-of-band signaling; it is an adaptation 
to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol 
does not require a node having the ability to receive an incoming bit from the channel while transmitting to 
the channel. Our protocol has the key feature of not only being prioritized and collision-free but also dealing 
successfully with hidden nodes. This key feature enables schedulability analysis of sporadic message streams 
in multihop networks. 
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Abstract 

Consider the problem of sharing a wireless channel 
between a set of computer nodes. Hidden nodes exist 
and there is no base station. Each computer node hosts 
a set of sporadic message streams where a message 
stream releases messages with real-time deadlines. We 
propose a collision-free wireless medium access 
control (MAC) protocol which implements static-
priority scheduling. The MAC protocol allows multiple 
masters and is fully distributed. It neither relies on 
synchronized clocks nor out-of-band signaling; it is an 
adaptation to a wireless channel of the dominance 
protocol used in the CAN bus. But unlike that protocol, 
our protocol does not require a node having the ability 
to receive an incoming bit from the channel while 
transmitting to the channel. Our protocol has the key 
feature of not only being prioritized and collision-free 
but also dealing successfully with hidden nodes. This 
key feature enables schedulability analysis of sporadic 
message streams in multihop networks. 

1. Introduction 

A fundamental problem in the design of distributed 
real-time systems is the sharing of a wireless 
communication channel such that timing requirements 
are satisfied. Periodic message transmission requests 
can be scheduled using static table-driven scheduling. 
Sporadic [1] message requests can be scheduled using 
polling, but unfortunately, such an approach is 
inefficient when the relative deadline is short as 
compared to the minimum inter-arrival time between 
two consecutive requests. 

An appealing solution is to assign a static priority to a 
message and use a medium access control (MAC) 
protocol that selects for transmission the message with 
the highest priority [2]. This approach was originally 
used in wired networks (the CAN bus) [3] and it has 

recently migrated to wireless networks [4-6]. 
Experiments showed it being surprisingly reliable for 
short-range communication; in particular, the response-
time equations for the CAN bus could be migrated to the 
wireless domain and the calculated response times were 
validated by the experiments of an implementation of the 
protocol using a low-power transceiver [6, 7]. 
Unfortunately, these MAC protocols were designed for 
only a single wireless broadcast domain, that is, every 
node receives every transmission. In particular, they did 
not deal with a well-known phenomenon in wireless 
networks called hidden nodes. Previous work in the 
wireless networking community offer solutions to the 
hidden node problem but unfortunately they are either 
not prioritized or they depend on out-of-band signaling. 
The former inhibits schedulability of sporadic message 
streams significantly when they have very different 
deadlines and the latter is a severe restriction since 
most wireless transceivers today do not have the 
capability of out-of-band signaling. 

In this paper we propose a MAC protocol for 
wireless networks where a broadcast from a node does 
not necessarily reach all nodes in the network. 
Consequently, hidden nodes may exist. Our MAC 
protocol is the first prioritized and collision-free MAC 
protocol designed to successfully deal with hidden 
nodes without relying on out-of-band signaling. We 
consider this research to be significant because it forms 
a enabling technology for schedulability analysis in 
wireless multihop networks; for example to realize the 
analysis in [8]. 

The remainder of this paper is structured as follows. 
Section 2 gives the main idea on how prioritization can 
be achieved and reasons about the challenges involved 
with transferring those ideas to networks with hidden 
nodes. Section 3 gives a precise description of the 
proposed protocol. Section 4 validates the protocol 
experimentally and Section 5 presents related work. 
Section 6 gives conclusions. 
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Figure 1. Arbitration in dominance/binary 
countdown protocols. 

2. Dominance Protocols 

Dominance/binary countdown protocols [1] devised 
for wired broadcast networks are the main inspiration 
for the MAC protocol proposed in this paper. Such 
protocols assign unique priorities to nodes. A node that 
requests to transmit waits until the channel is idle. 
Then it starts a conflict resolution phase – the 
arbitration – where each node sends its unique priority 
bit-by-bit starting with the most significant bit, while 
simultaneously monitoring the medium. The medium 
must be devised in such a way that nodes will only 
detect a recessive bit if no node is transmitting a 
dominant bit. If any node is transmitting a dominant 
bit, then every node will detect a dominant bit 
regardless of what the node itself is sending. During 
the arbitration, if a node contends with a recessive bit 
but hears a dominant bit, then it will refrain from 
transmitting any further bits and will only monitor the 
medium. Finally, only one node reaches the end of the 
arbitration without hearing a dominant bit, and 
therefore it carries on to transmit the message 
(including the data bits). 

Figure 1 illustrates the arbitration when three nodes 
with different priorities contend for the channel. If a bit 
is “0” then it is dominant and if a bit is “1” then it is 
recessive. Thus, low priority numbers represent high 
priorities. When a node with a recessive bit detects a 
dominant bit, it knows it has lost the arbitration. In the 
example illustrated in Figure 1, node 2 is recessive in 
bit 2, but hears a dominant bit and hence it loses. At 
this time instant, node 2 stops transmitting priority bits 
and only proceeds with monitoring the medium. 
Observe that while node 2 has a dominant bit 3, it has 
previously lost the arbitration (in bit 2) and thus node 2 

does not send its dominant bit 3 or any other 
subsequent bits. 

2.1. Wireless Dominance Protocols 
The dominance protocol for wired channels cannot  

migrate unmodified to a wireless channel because 
wireless transceiver cannot transmit and receive 
simultaneously. For this reason, an adaptation of 
dominance protocols for wireless networks has been 
proposed [5, 6]. In this adaptation, when messages 
contend for the channel, a conflict resolution phase, 
named tournament, is performed such that the highest-
priority message is granted transmission. During the 
tournament, nodes transmit the priority of the message 
contending for the medium bit-by-bit, similarly to the 
dominance arbitration. An important difference from 
wired dominance protocols is that a node contending with 
a dominant bit transmits an unmodulated carrier, and a 
node with a recessive bit transmits nothing, but listens. In 
this way, a node with a recessive bit can detect whether 
another node has a dominant bit. 

In [5, 6] a bit of the tournament is different from a data 
bit. Each bit in the tournament has a fixed duration of 
time sufficient for a node to switch between 
reception/transmission modes and detect a carrier.  

2.2. System Model 
We study the design of a MAC protocol for wireless 

networks composed of computer nodes (throughout the 
paper these are often simply referred to as nodes). A 
broadcast from a node does not necessarily reach all 
nodes. We describe the topology by an undirected 
graph; if a node broadcasts a message or a carrier then 
it will reach all its neighbors (in Section 4, we will 
explore the effect of noisy channels). 

Nodes execute applications that make requests to 
transmit. The protocol does not know about the origin 
of messages; two different messages may belong to the 
same sporadic message stream with a minimum inter-
arrival time or they may not. The protocol does neither 
rely on a base station nor synchronized clocks. We 
make the following assumptions: 
A1 ) links in the topology graph are bidirectional and 

the topology does not change with time; 
A2 ) messages have unique priorities; these priorities 

are non-negative integers; 
A3 ) npriobits denotes the number of bits required to 

represent the priorities; 
A4 ) prio[0..npriobits-1] is an array of bits 

representing the priority of a message. The most 
significant bit is prio[0]; 

A5 ) nodes are equipped with real-time clocks. For 
every unit of real-time, the clock increases by an 
amount in the range [1-ε, 1+ ε], 0< ε <1; 



A6 ) CLK denotes the granularity of the clock; 
A7 ) propagation delay has an upper bound α; 
A8 ) a node has only one transceiver and cannot send 

any out-of-band signals; 
A9 ) the transceiver takes SWXRX time units to 

switch from idle mode to reception mode and 
SWXTX to switch from idle mode to 
transmission mode. The time to switch from 
transmission mode or reception mode to idle 
mode is zero; 

A10 ) carrier detection range ≥ communication range 
=interference range (Section 3 discusses how 
this restriction can be relaxed); 

A11 ) all transmissions are broadcasts, that is, every 
neighbor is an intended receiver; 

A12 ) any transmission of a data message that overlaps 
at the receiver causes that receiver to fail the 
reception of any ongoing data transmission; 

A13 ) nodes are able to transmit carrier pulses for a 
determined interval of time; 

The following definition is also used: 
Definition. 2-neighbor. We say that a node A is a 

2-neighbor to node B if either (i) A is a neighbor of B 
or (ii) there exists a node C such that A is a neighbor of 
C and C is a neighbor of B. 

2.3. Design Propositions 
We will now discuss key design aspects to be 

considered in the design of a correct dominance 
protocol for wireless networks with hidden nodes. 

 
Figure 2. Example illustrating hidden 

nodes. 

Consider a node S, which requests to transmit. 
Figure 2 illustrates any possible case of hidden nodes 
with respect of node S. Nodes A and B exemplify any 
pair of neighbor nodes of S that are hidden from each 
other. Node C exemplifies any neighbor of A that is 
hidden from S and node E is a neighbor of C hidden 
from A. Finally, D is a neighbor of B hidden from S, 
and F is a neighbor of D hidden from B.  

In order for A and B to correctly receive a 
transmission from S, it is necessary that not only A and 
B refrain from transmitting, but also C and D do not 
transmit. On the other hand, E and F do not cause any 
interference to transmissions from S, because E, F and 
S are more than two hops away from each other. They 
do not share any common direct receiver, and if the 

priority of S was conveyed to these nodes, they could 
end up being suppressed from transmitting, when their 
transmissions can be performed in parallel with S. 
Thus, it follows that nodes sending a data packet need 
to contend for the medium with, and only with, its 2-
neighbors. Consider a dominance MAC protocol such 
as described in Section 2.1. Such protocol should start 
contention resolution by performing a tournament, 
where nodes use a combination of silence intervals and 
carrier pulses to represent their priority bits, it follows: 
P1) Priority bits need to be propagated exactly two 

hops away. 
To better illustrate P1, observe again Figure 2. 

When node S and node D contend for the channel, they 
must be aware of each others priorities, and this can be 
generalized for any pair of nodes that have at least one 
common receiver. However, nodes with no common 
direct receiver like, for example, S and F, do not need 
to know about each other’s priorities.  

Given P1 one can conclude that, if 2-neighbors are 
to exchange priority bits correctly, they need to agree 
on a common time reference prior to the transmission 
of priority bits, therefore: 
P2) Synchronization between 2-neighbors must be 

achieved before the start of the tournament. 
This proposition (P2) does not assume that the 

synchronization will be perfect, but it does assume that 
the spacing between transmission of priority bits and 
the priority bits themselves will have a duration that 
takes into account the synchronization error.  

Consider the problem of achieving synchronization 
between 2-neighbors. Nodes are not assumed to be 
synchronized in any way prior to running the MAC 
protocol. It is necessary to achieve a common time 
reference, with a bounded error, only using carrier 
pulses. Next, we discuss how to accomplish this. 

Consider first the problem of single-hop 
synchronization. In CAN [9], this is performed by 
letting a node wait for a long period. If the node hears 
that the carrier makes a transition from idle to busy 
then it resets its timer. Otherwise the node waits for a 
short while extra and if it still has not heard a carrier 
then it transmits a carrier and resets its timer. To make 
such scheme work across two hops, the 
synchronization carrier must be retransmitted. One 
solution is to let a node retransmit every carrier heard 
in the synchronization phase. If this is not done then a 
node must be able to decide from the carrier wave used 
in synchronization if the carrier has propagated one 
hop or two hops. The only way to do so (without out-
of-band signaling) is to detect a pattern or a duration of 
the carrier used for synchronization. However many 
unsynchronized nodes may initiate synchronization 
and cause the patterns to overlap and this makes it 



impossible for receivers to detect the pattern, making it 
impossible for a node to detect whether a carrier wave 
used for synchronization has propagated one, two or 
more hops away. This implies that: 
P3) The carrier pulse used to achieve 

synchronization must be propagated 
throughout the entire network. 

The negative performance impact of P3 is (as we 
will see in Section 4) very small due to two reasons. 
First, although P3 states that synchronization pulses 
must be propagated throughout the entire network, it is 
still possible for many nodes to transmit data messages 
in parallel. Second, the duration of a priority bit is 
affected by the synchronization error between 2-
neighbors but it is independent of the synchronization 
error between any two nodes in the networks and 
hence it is independent of the network diameter. 

Let us now study the case of a node with a pending 
data message to send. This node has performed a 
tournament and lost, and now it must have the 
opportunity to start another tournament (by sending a 
synchronization pulse). Let D in Figure 2 denote this 
node and let S denote the node that won the 
tournament. After the end of the tournament, node S 
proceeds to send its data message and neighboring 
nodes of S that receive the message will know the 
finishing time of the transmission. But other nodes will 
not know. Consequently, it holds that: 
P4) If transmission times are unknown then it is 

impossible for all nodes to know the finishing 
time of the latest parallel transmission after a 
tournament. 

It would be possible to circumvent P4 by 
propagating data messages network wide but we reject 
that idea because (i) it would preclude parallel 
transmissions and (ii) the accuracy of the 
synchronization from the finishing time of the latest 
parallel transmission would depend on the diameter of 
the network. 

3. The Proposed Protocol 

This section presents the design of a dominance 
protocol for wireless networks, based on the 
propositions stated previously (Section 2.3).  

Let us start by addressing the first design 
proposition (P1). To propagate a priority bit two hops 
away, the transmission of priority bits is carried out in 
two phases. This is detailed in Figure 3. For each 
priority bit, from bit index 0 to npriobits-1, procedure 
Bit_Contention is called. It assumes that (i) nodes 
are already synchronized and (ii) the duration of the 
priority bits (timeout constant H) and the time interval  

Input 
 prio: array containing the priority bits; 
 i: current priority bit index; 
 winner: initialized to TRUE at the beginning of the tournament in 

all nodes with pending messages; otherwise, initialized to FALSE; 
Global Variables 
 heardDOMbit1, heardDOMbit2, heardDOMbit :  indicate if a 

dominant bit was heard; 
Constants 
 H: timeout constant for the duration of a priority bit; 
 G: timeout of the interval between priority bits – “Guard band”; 
 DOMINANT: value of a dominant bit (zero); 
 RECESSIVE: value of a recessive bit (one); 
procedure BC_Phase1() 
begin 
 if prio[i] = DOMINANT AND winner=TRUE then  
  transmit DOMINANT for H time units 
 else 
  monitor the medium for H time units 
  if transmission of DOMINANT bit is detected then 
   heardDOMbit1 ← TRUE 
  endif 
 endif 
end 

procedure BC_Phase2() 
begin 
 if heardDOMbit1 = TRUE then  
  transmit DOMINANT for H time units 
 else 
  monitor the medium for H time units 
  if transmission of DOMINANT bit is detected then 
   heardDOMbit2 ← TRUE 
  endif 
 endif 
end 

procedure Bit_Contention() 
begin 
 heardDOMbit1 ← heardDOMbit2 ← heardDOMbit ← FALSE 
 call BC_Phase1() 
 sleep for G time units 
 call BC_Phase2() 
 heardDOMbit ← heardDOMbit1 OR heardDOMbit2 
 if winner  = TRUE AND heardDOMbit  = TRUE AND 
   prio[i] = RECESSIVE then 
  winner ← FALSE 
 endif 
end 

Figure 3. Bit contention. 

between transmission of priority bits (the guard band; 
timeout constant G) are defined such that the 
synchronization error is taken into account (later we  
will discuss how to choose the values for H and G). In 
the beginning of the tournament, all nodes with 
pending messages are potential winners, and thus 
variable winner is initialized to TRUE. 

Procedure Bit_Contention executes the two 
phases of bit contention. In the first phase (executed by 
procedure BC_Phase1), each node sends its own  
priority bits. That is, if a node is contending with a 
dominant priority bit, it will transmit a carrier for H 
time units; if a node is contending with a recessive bit, 



it will monitor the medium for the same amount of 
time. A node contending with a recessive bit that 
detects the transmission of a dominant bit by another 
node, will set variable heardDOMbit1 to TRUE. Then, 
after waiting for the time interval between priority bits, 
nodes proceed to execute the second phase of bit 
contention, by calling procedure BC_Phase2. In this 
phase, nodes which during the first phase contended 
with a recessive bit and detected a dominant bit will 
transmit a dominant bit. Nodes which contended with a 
dominant bit, or did not hear a dominant bit in the first 
phase will monitor the medium. If they detect the 
transmission of a dominant bit by another node, then 
variable heardDOMbit2 is set to TRUE. After the end 
of the second phase, nodes which detected a dominant 
bit in either phases and contended with a recessive bit, 
have lost the tournament and set winner to FALSE. 

This describes the design of the tournament in the 
proposed protocol. To continue the discussion of the 
protocol design, let us introduce the protocol 
automaton, presented in Figure 4. The protocol is 
illustrated using timed-automata like notation. States 
are represented as vertices and transitions are 
represented as edges. An edge is described by its guard 
(a condition which has to be true in order for the 
protocol to make the transition) and an update (an 
action that occurs when the transition is made). In 
figures, we let “/” separate the guards and the updates; 
the guards are before “/” and the update is after. We let 
“=” denote test for equality and let “:=” denote 
assignment to a variable. States are numbered from 0 
to 17. State 0 is the initial state. Associated to each 
node the following variables are considered: a clock x; 
an integer i within the range 0..npriobits-1; an integer 
prio occupying npriobits bits; an integer 
winner_prio occupying npriobits bits and a boolean 
variable winner. Let winner_prio[i] denote the bit i 
in the variable winner_prio, and analogously for 
prio[i]. 

Eight functions can be called in a node: 
initRadio(); radioTestMode(); 
radioDataRxMode(); startTx(); carrierOn(); 
carrierOff(); carrierSenseOn() and 
carrierSenseOff(). The function initRadio() is 
used to perform any initialization on the radio chip and 
to set it into a known starting state. 
radioTestMode() sets the radio into a mode where it 
is able to transmit unmodulated carrier pulses. The 
function radioDataRxMode() prepares the radio to 
receive a data packet. startTx() instructs the radio 
to transmit the data message passed as argument. The 
function carrierOn() starts transmitting a carrier 
and continues doing so until function carrierOff() 

is called. Function carrierSenseOn()is used to set 
the radio into receive and starts detecting carrier 
pulses, while carrierSenseOff()is called to stop 
detecting carrier pulses. The symbol “carrier?” is 
used in the timed-automata of Figure 4 with the 
following meaning: sense for a carrier and if there is a 
carrier then “carrier?” is true. Several different 
timeout values are used. These timeouts (C, E, F, G, H, 
TFCS, SWXTX and SWXRX) are constants. The values 
of these timeouts are discussed later in this paper. 

To describe the main concept of the 2-neighbour 
synchronization made, we will study the simple 
sequence of state transitions that nodes can take to 
synchronize after they boot, by observing Figure 4.  
After initializing the radio, nodes move to State 1. 
Transition 1→2 ensures that the radio changes to 
receive mode and monitors the medium for time 
enough to detect if the medium is idle or not. In State 
2, nodes wait for a long duration of silence (denoted by 
F), such that no node disrupts a tournament being 
performed by other nodes. Then nodes with pending 
messages perform transition 3→4 after waiting for E 
time units, guaranteeing that other nodes have time to 
reach State 3. Nodes that make the transition 3→4 start 
sending a carrier pulse in order to synchronize. Other 
nodes may take one of the two following sequence of 
state transitions: (i) a node is in State 3 and has 
pending messages and it does not hear a carrier for E 
time units so it makes the transition 3→4, or (ii) a node 
in state 3 (either because it is waiting to make 
transition 3→4, or does not have pending messages) 
can detect the carrier pulse being sent by other nodes 
and perform transition 3→5. Nodes making transition 
3→5 start transmitting the synchronization carrier 
pulse and immediately reset their timers, but nodes 
making transition 3→4 wait for SWXTX to reset their 
timers because only at that time the carrier pulse is 
actually being transmitted. Nodes then stay in State 5 
sending the carrier pulse and make transition 5→8 
after 3H time units. At this point nodes stop sending 
the carrier pulse and synchronization ends with nodes 
resetting their timers.  

Notice that this procedure respects propositions P2, 
as it will achieve a common reference point in time 
between 2-neighbours. This time reference will have 
an error, but this error is bounded and accountable for 
in the lengths of priority bits and intervals between 
priority bits. Proposition P3 is also respected because 
all nodes will either start a tournament themselves 
(thus send a synchronization pulse) or detect and 
retransmit a synchronization pulse. We can observe, in 
Figure 4, that nodes can actually take different 



sequences of state transitions to synchronize. Section 3.1 discusses all

tournament

tx/rx data message

synchronization

10

x>=3H/
x:=0

14

x>=SWXRX+TFCS/
x:=0

9

11

x>=H+G+(2G+2H)*i/
if (prio[i]=0 AND winner=TRUE) then 
    carrierOff()
else
    carrierSenseOff()
end if

1213

i<npriobits-1/
i:=i+1

i=npriobits-1 AND x>=G+(2G+2H)*npriobits/
x:=0
radioDataRxMode()

winner=TRUE AND x>=H/
startTx(sendMsg)

winner=FALSE/
if (listen=FALSE) enqueue(sendMsg)

carrier?/
heardDOMbit1:=TRUE

winner_prio[i]:=0

carrier?/
heardDOMbit2:=TRUE

winner_prio[i]:=0

x>=G+(2G+2H)*i/
heardDOMbit1:=FALSE
heardDOMbit2:=FALSE
if (prio[i]=0 AND winner=TRUE) then 
    winner_prio[i]:=0
    carrierOn()
else 
    winner_prio[i]:=1
    carrierSenseOn() 
end if

x>=2H+2G+(2G+2H)*i/
if (heardDOMbit1=TRUE) then
    carrierOff()
else
    carrierSenseOff()
end if
heardDOMbit = (heardDOMbit1 OR heardDOMbit2)
if (winner=TRUE AND
  heardDOMbit=TRUE AND prio[i]=1) then
    winner :=FALSE
end if

x>=H+2G+(2G+2H)*i/
if (headDOMbit1=TRUE) then
    carrierOn()
else
    carrierSenseOn()
end if

2

x>=F/
x:=0

carrier?/
x:=0

3

x>=E AND msgQueue≠EMPTY/
carrierSenseOff()
carrierOn()

4

5

carrier?/
carrierSenseOff()
carrierOn()
x:=0

x>=E+SWXTX/
x:=0

0

/
initRadio

radioTestMode()
carrierSenseOn()

x:=0

1

15x>=H+C/
x:=0
radioTestMode()
carrierSenseOn()

6

no carrier?/
x:=0

x>=3H-TFCS/

8

/
carrierOff()
i:=winner_prio:=0
if (msgQueue EMPTY) then

winner:=TRUE
listen:=FALSE
sendMsg:=dequeueHPMsg()
prio:=sendMsg.prio

else
winner:=FALSE
listen:=TRUE
sendMsg:=NULL
prio:=INVALID_PRIO

end if

7

x>=3H/
x:=0

16

x>=SWXRX+TFCS/
x:=0

17

x>=E+TFCS/
x:=0

carrier?/
carrierSenseOff()
carrierOn()
x:=0

Timeouts used:
  C - Timeout to wait for receive/transmit messages; 
E - Timeout to cope with synchronization imperfections (such as clock inaccuracies and transmit/receive switching times).

  F - Initial idle period of silence;
G - Gap between the bits in the tournament;

  H - Duration of a bit in the tournament;
SWXTX - Time that the radio takes to switch between idle and transmit mode. 
SWXRX - Time that the radio takes to switch between idle and receive mode.  

Figure 4. Protocol state automaton. 

possible sequences nodes can take to synchronize, 
along the resulting synchronization error. By looking 
at transition 15→16 in Figure 4, the solution used for 
approaching proposition P4 becomes obvious. The 
solution was to withdraw one of its assumptions: In 

Section 2.3 it was assumed that nodes had no 
knowledge of message transmission times. However 
this meant that it was impossible that all nodes know 
the finishing time of the latest parallel transmission 
after a tournament. The solution is to have nodes 



knowing an upper bound on the message transmission time for the whole network, defined by the timeout

 
Figure 5. Synchronization scenarios.

constant C. In this way, all nodes know exactly how 
much time they should wait for messages to be 
transmitted or received, regardless of whether they are 
able to receive them or not. 

3.1. Analyzing the Synchronization Error 
As observed in the previous section, the 

synchronization error influences the duration of the 
priority bits in the tournament and the time between 
them. Therefore we now look into the synchronization 
error by studying the possible scenarios for nodes to 
achieve synchronization. Figure 5a presents the first 
scenario. Consider two neighbor nodes N1 and N2, both 
with pending messages. Node N1 enters State 3 at time 
t1, and stays here for E time units, to ensure that other 
nodes have time to reach State 3. In a worst case 
scenario, a node N2 will enter State 3 exactly at the 
same time node N1 leaves State 3, at time t2. Let us 
assume (later we show this is true) that E is a time 
duration smaller that the time need for a node to switch 
from idle to transmit plus the time necessary for the 
other node to detect a carrier pulse. That is, 
E  ≤ SWXTX + TFCS. Then N2 will never detect the 
carrier being sent by node N1, and thus will move on to 
State 4 and, after this, nodes will do exactly the same 
transitions, but with E time units of difference between 

them, as illustrated in Figure 5a. Finally, nodes finish 
synchronization at times t3 and t4 with a 
synchronization error of E.  

The next scenario depicted in Figure 5b considers 
again two neighbor nodes N1 and N2, but now only N1 
has pending messages. Node N1 reaches State 3 at time 
t5, and after E time units, it proceeds to State 4. At this 
point, N1 instructs the radio to start sending a carrier 
pulse, and this carrier pulse will actually start being 
transmitted after SWXTX time units. Let us now 
consider node N2. Node N2 has no message to send, 
and thus, after entering State 3 and waiting for E time 
units, it will stay in this state. Figure 5b shows the time 
that N2 can enter State 5 in order to participate in the 
next tournament, time t7. Observe that, in order to 
reach State 5 at this time, node N2 must therefore be in 
State 3 at most TFCS time units before time t7. In such 
scenario, node N2 makes the transition 3→5 because it 
detects the synchronization carrier from other node. 
After this, nodes enter State 8 at time t8 and t9 with a 
maximum error of TFCS time units. 

Observing the automaton in Figure 4, we see that a 
similar state transition sequence (N2 enters state 17 
E+TFCS time units before time t7) can occur because a 
node in State 17 can make transition 17→5 if it detects 
the synchronization carrier from the other node. 



The third synchronization scenario in Figure 5c 
depicts another sequence of state transitions nodes can 
take to synchronize. Again consider two neighbor 
nodes N1 and N2, where only N1 has pending messages. 
Node N1 proceeds as before, entering State 3 at time t10 
and reaches State 4 E time units after. Node N2 is 
waiting to observe a long period of silence, but if it 
detects a carrier pulse, N2 will make transition 2→6. If 
the carrier pulse detected is a synchronization pulse, 
node N2 stays in State 6 long enough to perform 
transition 6→7. As illustrated in Figure 5c, this will 
cause node N2 to reach State 8 with a maximum 
difference of TFCS time units of N1. 

The three synchronization scenarios presented 
depict the synchronization between two neighbor 
nodes. However, the synchronization error must be 
studied between 2-neighbors, and Figure 5d does this. 
Consider three nodes N1, N2 and N3. Nodes N1 and N2 
perform the same sequence of state transitions as in 
Figure 5a, already described. Node N3 detects the 
retransmission of the carrier pulse made by node N2 at 
time t18. Consequently, N3 reaches State 8 TFCS time 
units after time t20, when node N2 reached State 8 and 
E+TFCS after node N1 that reached state 8 ate time t19. 
The sequence of state transitions made by node N3 in 
this scenario is similar to the one made by N2 in Figure 
5b, and likewise node N3 could be in State 17 E+TFCS 
time units before time t18, and take transition 17→5.  

Observe that N3 can take a sequence of state 
transitions similar to node N2 in Figure 5c, and thus 
reach state 8 TFCS time units after N2 and 2*TFCS 
after node N1. 

By the previous synchronization scenarios studied, 
one can observe that the maximum synchronization 
error between 2-neighbors δ is: 

δ = max(E+TFCS,2*TFCS) (1) 

It is necessary to select time-out parameters to 
ensure that synchronization before the tournament 
works and that the synchronous behavior in Figure 3 is 
achieved. See Appendix A in [TR] for details on how 
to do this. This gives us the following properties: 
1. Collision-free. There is no pair of nodes (X, Y) 

such that (i) X is a 2-neighbor of Y and (ii) X and Y 
are both in state 15 and (iii) the variable winner 
in X and Y are TRUE simultaneously. 

2. Progress. Consider a node X that requests to 
transmit. If for every 2-neighbor node Y of X it 
holds that prio(Y) > prio(X) then node X must have 
the variable winner equal to TRUE. 

3. Prioritization. If a node X requests to transmit and 
node X is in state 15 and its variable winner is 
equal to FALSE then there is a node Y such that (i) 

Y is a 2-neighbor of X and (ii) Y requests to 
transmit and (iii) Y has higher priority than X. 

4. Experimental Evaluation 

We have implemented the protocol in OMNet++ 
and ran it with several hours of simulated time. We 
detected whether the correctness properties collision-
free, progress and prioritization were satisfied for 
channels with no noise. We found that the correctness 
properties were satisfied. 

5. Related Work 

There has been a significant amount of research on 
MAC protocols aiming at goals such as fairness or 
high throughput. Here, we will only focus on works 
relevant to the problem of scheduling sporadic 
messages with deadlines and on fully distributed 
algorithms.  

 
The introduction of the wireless LAN standard 

IEEE 802.11 stimulated the development of many [10-
15] prioritized Carrier Sense Multiple Access (CSMA) 
MAC protocols and a few of them [10-12] were 
adopted for the real-time profile IEEE 802.11e. 
Another technique [16], not based on IEEE 802.11, is 
to implement prioritization using two separate narrow 
band busy-tones to communicate that a node is 
backlogged with a high-priority message. This 
technique has the drawback of requiring specialized 
hardware (for listening to the narrow band signals), 
requires extra bandwidth (for the narrow band signals) 
and it supports only two priority levels. We believe 
that this out-of-band signaling solution [16] can be 
extended to k priority levels (although the authors do 
not mention it), but doing so would require 2k narrow 
band signals. Unfortunately, all [10-16] of these MAC 
protocols can suffer from collisions making it 
impossible to prove that timing requirements are 
satisfied. 

MAC protocols have also been proposed from the 
real-time systems community with the goal of meeting 
deadlines. They are collision-free. Some protocols use 
tables (sometimes called TDMA templates) with 
explicit start times for message transmissions. These 
tables are created at run-time in a distributed fashion 
[17] or by a leader [18]. It is also conceivable to use a 
TDMA template designed before run-time [19] and use 
it to schedule wireless traffic. However, all these time-
table approaches have the drawback of requiring that 
sporadic message streams are dealt with using polling, 
which is inefficient. Another approach, Implicit-
EDF [20], is based on the assumption that all nodes 
know the traffic on the other nodes that compete for 



the medium, and all these nodes execute the EDF 
scheduling algorithm. If the message selected by the 
EDF scheduling algorithm is in the node’s queue of 
outgoing messages then the node transmits this 
message, otherwise it does not transmit. Unfortunately, 
this algorithm is based on the assumption that a node 
knows the arrival time of messages on other nodes, and 
this implies that polling must be used to deal with 
sporadic message streams. 

The dominance protocol [2] performs a tournament 
among the messages that request to transmit, and the 
winner will transmit. It uses global priorities, can 
schedule sporadic message streams and it is collision-
free. Unfortunately, it requires that a node has the 
ability to receive an incoming bit from the channel 
while transmitting to the channel. Such a behavior is 
impossible on a wireless channel due to the large 
difference in transmitted energy and the received 
energy. Two attempts ([21] and [22-24]) have been 
made to migrate the dominance protocol to the 
wireless context. Both of them modulate the priority 
bits using on-off keying, encoding a dominant bit as 
the transmission of a carrier and a recessive bit as 
silence. In this way a node transmitting a recessive bit 
can detect a dominant bit and this node will withdraw. 
Our previous work [21] provided prioritization and 
was collision-free. Unfortunately it was designed to 
operate in non multi-hop networks. The other approach 
[22-24] was designed to operate in multihop networks 
but it has several shortcomings. First, it claims to solve 
the hidden node problem (the hidden node problem 
will be explained in Section 2.2), but actually it only 
offers a partial solution. A sending node transmits a 
busy tone on a separate channel and this tone has 
higher transmission power (or the receivers for the 
tone are more sensitive) so it has double the range as 
compared to the range of data transmission. This does 
not work in the case where two source nodes request to 
transmit to a receiving node and the two source nodes 
are close to each other but a communication obstacle 
keeps them hidden from each other. (This scenario is 
also discussed in Figure 5 in [16]). Second, in a 
network with n nodes it can happen that only one node 
transmits although it would be possible for n/3 nodes 
to transmit in parallel (the authors of [22-24] actually 
mention this in Figure 3 and Figure 4 in [22], no 
solution is offered).  

6. Conclusions 

We have proposed a MAC protocol that is 
prioritized and collision-free in the presence of hidden 
nodes. It achieves this without base stations and 
without relying on out-of-band signals. This work 

offers a solid foundation for schedulability analysis 
techniques for wireless networks (for example [8]). 
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Appendix A: Design Parameters and 
Correctness 

In this section we discuss the correctness of the 
protocol and demonstrate how assigning values to the 
constants C, E, F, G, H, TFCS, SWXTX and SWXRX 
affect the correctness.  

The protocol must satisfy the following three 
relevant properties. 
1. Collision-free. There is no pair of nodes (X, Y) 

such that (i) X is a 2-neighbor of Y and (ii) X and Y 
are both in state 15 and (iii) the variable winner 
in X and Y are TRUE simultaneously. 

2. Progress. Consider a node X that requests to 
transmit. If for every 2-neighbor node Y of X it 
holds that prio(Y) > prio(X) then node X must have 
the variable winner equal to TRUE.  

3. Prioritization. If a node X requests to transmit and 
node X is in state 15 and its variable winner is 
equal to FALSE then there is a node Y such that (i) 
Y is a 2-neighbor of X and (ii) Y requests to 
transmit and (iii) Y has higher priority than X. 

These properties hold if the following protocol 
constraints (C1 – C5) are respected.  
C1 ) When a node transmits a dominant bit in iteration 

i in the tournament, it is received by all other nodes 
and it is perceived to be received in iteration i. 

Implications: 
Consider an iteration of the tournament. It must 

have been sufficient overlap between the time interval 
where one node transmits the carrier to inform that it 
has a dominant bit and the time interval where a node 
with a recessive bit listens for nodes with a dominant 
bit. Due to clock drift and inaccuracy of 
synchronization, this overlap becomes smaller and 
smaller with the iterations within the tournament. 
Hence the last iteration (the worst scenario) of the 
tournament is considered and the following constraint 
can be derived: 

( ) ( )[ ] [ ]
( ) ( )[ ] [ ]

SWXRXTFCSLCLK
npriobitsGHGH

npriobitsGHGHH

222
11223

11223

+>−−−
−+×−×+++

−−×−×++++

δα
ε

ε  
(2) 

Equation (2) guarantees that even in the presence of 
worst-case clock inaccuracies, all nodes will hear a 
dominant bit for at least the time necessary to detect a 
carrier (TFCS). 
C2 ) If a node Ni has perceived a time of silence long 

enough (F time units) to make the transition 2→3 but 
other nodes perceive the duration of silence to be less 
than F time units so far due to different time-of-
flights and clock-imperfections, then node Ni needs to 

wait until all nodes have perceived this long time of 
silence.  

Implications: 
The protocol must stay in State 2 for E time units to 

ensure this, and the following protocol constraint is 
derived: 

ETFCS
TFCSSWXRXFLCLK

<
+×+++++ εα 2)(22  

(3) 

C3 ) With similar reasoning as for C2, a node which 
has won the tournament must wait H time units 
before transmission (this waiting occurs in 14→15) 
to be sure that all losing nodes have reached State 
15.  

Implications: 
H must satisfy the following constraint: 

( ) ( )[ ]
HLCLK

npriobitsGHGHH
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+×−×++++
δα

ε
22
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C4 ) During the tournament, the maximum time 
interval of idle time should be less than F, the initial 
idle period. 

Implications: 
This assures that if one node makes the transition 

from State 2 to State 3 (the initial idle time period) 
then all nodes will do it at most E time units later. 
Therefore, the following protocol constraint must be 
satisfied: 

( ) ( ) [ ]
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C5 ) The time interval between two successive 
dominant bits must be long enough to assure that no 
node interprets the first dominant bit to be 
transmitted in the time interval for the second 
dominant bit.  

Implications: 
The worst case occurs when these two bits are the 

last ones in the tournament. Therefore, the following 
protocol constraint must be satisfied: 

( ) ( )[ ] [ ]
( ) ( )[ ] [ ]
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C6 ) Transition 6→7 cannot occur when a node is 
transmitting a message (a message transmission is 
detected as a carrier, if nodes are performing carrier 
detection):  

TFCSSWXTXCH ++>=3  (7) 

C7 ) Transition 15→16 takes, at least, the time to 
transmit/receive the longest message in the network. 



}max{ {i..n} i iCC ≥∈∀  (8) 

 
The values of C, E, F, G and H must be selected 

such as they satisfy (2)-(8). The selection of TFCS, 
SWXRX and SWXTX is imposed by the implementation 
platform chosen. For the CC2420 transceiver [6, 7] we 
obtain: E=620µs, F=44990µs, G=1210µs, H=2390µs, 
C=4224µs. 


