

Collision-Free Prioritized Medium Access in
the Presence of Hidden Nodes Without
Relying on Out-of-Band Signaling

Björn Andersson
Nuno Pereira
Eduardo Tovar

www.hurray.isep.ipp.pt

Technical Report

TR-061105

Version: 1.0

Date: Nov 2006

Collision-Free Prioritized Medium Access in the Presence of Hidden Nodes
Without Relying on Out-of-Band Signaling
Björn ANDERSSON, Nuno PEREIRA, Eduardo TOVAR

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {bandersson. nap, emt}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of sharing a wireless channel between a set of computer nodes. Hidden nodes exist and
there is no base station. Each computer node hosts a set of sporadic message streams where a message stream
releases messages with real-time deadlines. We propose a collision-free wireless medium access control
(MAC) protocol which implements static-priority scheduling. The MAC protocol allows multiple masters
and is fully distributed. It neither relies on synchronized clocks nor out-of-band signaling; it is an adaptation
to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol
does not require a node having the ability to receive an incoming bit from the channel while transmitting to
the channel. Our protocol has the key feature of not only being prioritized and collision-free but also dealing
successfully with hidden nodes. This key feature enables schedulability analysis of sporadic message streams
in multihop networks.

Collision-Free Prioritized Medium Access in the Presence of Hidden Nodes
Without Relying on Out-of-Band Signaling

Björn Andersson, Nuno Pereira, Eduardo Tovar
IPP Hurray Research Group

Polytechnic Institute of Porto, Portugal
{bandersson, npereira, emt}@dei.isep.ipp.pt

Abstract

Consider the problem of sharing a wireless channel
between a set of computer nodes. Hidden nodes exist
and there is no base station. Each computer node hosts
a set of sporadic message streams where a message
stream releases messages with real-time deadlines. We
propose a collision-free wireless medium access
control (MAC) protocol which implements static-
priority scheduling. The MAC protocol allows multiple
masters and is fully distributed. It neither relies on
synchronized clocks nor out-of-band signaling; it is an
adaptation to a wireless channel of the dominance
protocol used in the CAN bus. But unlike that protocol,
our protocol does not require a node having the ability
to receive an incoming bit from the channel while
transmitting to the channel. Our protocol has the key
feature of not only being prioritized and collision-free
but also dealing successfully with hidden nodes. This
key feature enables schedulability analysis of sporadic
message streams in multihop networks.

1. Introduction

A fundamental problem in the design of distributed
real-time systems is the sharing of a wireless
communication channel such that timing requirements
are satisfied. Periodic message transmission requests
can be scheduled using static table-driven scheduling.
Sporadic [1] message requests can be scheduled using
polling, but unfortunately, such an approach is
inefficient when the relative deadline is short as
compared to the minimum inter-arrival time between
two consecutive requests.

An appealing solution is to assign a static priority to a
message and use a medium access control (MAC)
protocol that selects for transmission the message with
the highest priority [2]. This approach was originally
used in wired networks (the CAN bus) [3] and it has

recently migrated to wireless networks [4-6].
Experiments showed it being surprisingly reliable for
short-range communication; in particular, the response-
time equations for the CAN bus could be migrated to the
wireless domain and the calculated response times were
validated by the experiments of an implementation of the
protocol using a low-power transceiver [6, 7].
Unfortunately, these MAC protocols were designed for
only a single wireless broadcast domain, that is, every
node receives every transmission. In particular, they did
not deal with a well-known phenomenon in wireless
networks called hidden nodes. Previous work in the
wireless networking community offer solutions to the
hidden node problem but unfortunately they are either
not prioritized or they depend on out-of-band signaling.
The former inhibits schedulability of sporadic message
streams significantly when they have very different
deadlines and the latter is a severe restriction since
most wireless transceivers today do not have the
capability of out-of-band signaling.

In this paper we propose a MAC protocol for
wireless networks where a broadcast from a node does
not necessarily reach all nodes in the network.
Consequently, hidden nodes may exist. Our MAC
protocol is the first prioritized and collision-free MAC
protocol designed to successfully deal with hidden
nodes without relying on out-of-band signaling. We
consider this research to be significant because it forms
a enabling technology for schedulability analysis in
wireless multihop networks; for example to realize the
analysis in [8].

The remainder of this paper is structured as follows.
Section 2 gives the main idea on how prioritization can
be achieved and reasons about the challenges involved
with transferring those ideas to networks with hidden
nodes. Section 3 gives a precise description of the
proposed protocol. Section 4 validates the protocol
experimentally and Section 5 presents related work.
Section 6 gives conclusions.

Node 1 priority
01011111

Node 2 priority
01100011

Node 3 priority
01010111

Start of
arbitration

Node 2 hears a dominant bit;
Node 2 lost the arbitration

Node 1 hears a dominant bit;
Node 1 lost the arbitration

Node 3 is the only node that
finishes the arbitration without
losing

Dominant

Recessive

End of
arbitration

 0 1 0 1 1

Medium Status
 0 1 0 1 0 1 1 1

Bit 0 1 2 3 4 5 6 7

 0 1 1

 0 1 0 1 0 1 1 1

Figure 1. Arbitration in dominance/binary
countdown protocols.

2. Dominance Protocols

Dominance/binary countdown protocols [1] devised
for wired broadcast networks are the main inspiration
for the MAC protocol proposed in this paper. Such
protocols assign unique priorities to nodes. A node that
requests to transmit waits until the channel is idle.
Then it starts a conflict resolution phase – the
arbitration – where each node sends its unique priority
bit-by-bit starting with the most significant bit, while
simultaneously monitoring the medium. The medium
must be devised in such a way that nodes will only
detect a recessive bit if no node is transmitting a
dominant bit. If any node is transmitting a dominant
bit, then every node will detect a dominant bit
regardless of what the node itself is sending. During
the arbitration, if a node contends with a recessive bit
but hears a dominant bit, then it will refrain from
transmitting any further bits and will only monitor the
medium. Finally, only one node reaches the end of the
arbitration without hearing a dominant bit, and
therefore it carries on to transmit the message
(including the data bits).

Figure 1 illustrates the arbitration when three nodes
with different priorities contend for the channel. If a bit
is “0” then it is dominant and if a bit is “1” then it is
recessive. Thus, low priority numbers represent high
priorities. When a node with a recessive bit detects a
dominant bit, it knows it has lost the arbitration. In the
example illustrated in Figure 1, node 2 is recessive in
bit 2, but hears a dominant bit and hence it loses. At
this time instant, node 2 stops transmitting priority bits
and only proceeds with monitoring the medium.
Observe that while node 2 has a dominant bit 3, it has
previously lost the arbitration (in bit 2) and thus node 2

does not send its dominant bit 3 or any other
subsequent bits.

2.1. Wireless Dominance Protocols
The dominance protocol for wired channels cannot

migrate unmodified to a wireless channel because
wireless transceiver cannot transmit and receive
simultaneously. For this reason, an adaptation of
dominance protocols for wireless networks has been
proposed [5, 6]. In this adaptation, when messages
contend for the channel, a conflict resolution phase,
named tournament, is performed such that the highest-
priority message is granted transmission. During the
tournament, nodes transmit the priority of the message
contending for the medium bit-by-bit, similarly to the
dominance arbitration. An important difference from
wired dominance protocols is that a node contending with
a dominant bit transmits an unmodulated carrier, and a
node with a recessive bit transmits nothing, but listens. In
this way, a node with a recessive bit can detect whether
another node has a dominant bit.

In [5, 6] a bit of the tournament is different from a data
bit. Each bit in the tournament has a fixed duration of
time sufficient for a node to switch between
reception/transmission modes and detect a carrier.

2.2. System Model
We study the design of a MAC protocol for wireless

networks composed of computer nodes (throughout the
paper these are often simply referred to as nodes). A
broadcast from a node does not necessarily reach all
nodes. We describe the topology by an undirected
graph; if a node broadcasts a message or a carrier then
it will reach all its neighbors (in Section 4, we will
explore the effect of noisy channels).

Nodes execute applications that make requests to
transmit. The protocol does not know about the origin
of messages; two different messages may belong to the
same sporadic message stream with a minimum inter-
arrival time or they may not. The protocol does neither
rely on a base station nor synchronized clocks. We
make the following assumptions:
A1) links in the topology graph are bidirectional and

the topology does not change with time;
A2) messages have unique priorities; these priorities

are non-negative integers;
A3) npriobits denotes the number of bits required to

represent the priorities;
A4) prio[0..npriobits-1] is an array of bits

representing the priority of a message. The most
significant bit is prio[0];

A5) nodes are equipped with real-time clocks. For
every unit of real-time, the clock increases by an
amount in the range [1-ε, 1+ ε], 0< ε <1;

A6) CLK denotes the granularity of the clock;
A7) propagation delay has an upper bound α;
A8) a node has only one transceiver and cannot send

any out-of-band signals;
A9) the transceiver takes SWXRX time units to

switch from idle mode to reception mode and
SWXTX to switch from idle mode to
transmission mode. The time to switch from
transmission mode or reception mode to idle
mode is zero;

A10) carrier detection range ≥ communication range
=interference range (Section 3 discusses how
this restriction can be relaxed);

A11) all transmissions are broadcasts, that is, every
neighbor is an intended receiver;

A12) any transmission of a data message that overlaps
at the receiver causes that receiver to fail the
reception of any ongoing data transmission;

A13) nodes are able to transmit carrier pulses for a
determined interval of time;

The following definition is also used:
Definition. 2-neighbor. We say that a node A is a

2-neighbor to node B if either (i) A is a neighbor of B
or (ii) there exists a node C such that A is a neighbor of
C and C is a neighbor of B.

2.3. Design Propositions
We will now discuss key design aspects to be

considered in the design of a correct dominance
protocol for wireless networks with hidden nodes.

Figure 2. Example illustrating hidden

nodes.

Consider a node S, which requests to transmit.
Figure 2 illustrates any possible case of hidden nodes
with respect of node S. Nodes A and B exemplify any
pair of neighbor nodes of S that are hidden from each
other. Node C exemplifies any neighbor of A that is
hidden from S and node E is a neighbor of C hidden
from A. Finally, D is a neighbor of B hidden from S,
and F is a neighbor of D hidden from B.

In order for A and B to correctly receive a
transmission from S, it is necessary that not only A and
B refrain from transmitting, but also C and D do not
transmit. On the other hand, E and F do not cause any
interference to transmissions from S, because E, F and
S are more than two hops away from each other. They
do not share any common direct receiver, and if the

priority of S was conveyed to these nodes, they could
end up being suppressed from transmitting, when their
transmissions can be performed in parallel with S.
Thus, it follows that nodes sending a data packet need
to contend for the medium with, and only with, its 2-
neighbors. Consider a dominance MAC protocol such
as described in Section 2.1. Such protocol should start
contention resolution by performing a tournament,
where nodes use a combination of silence intervals and
carrier pulses to represent their priority bits, it follows:
P1) Priority bits need to be propagated exactly two

hops away.
To better illustrate P1, observe again Figure 2.

When node S and node D contend for the channel, they
must be aware of each others priorities, and this can be
generalized for any pair of nodes that have at least one
common receiver. However, nodes with no common
direct receiver like, for example, S and F, do not need
to know about each other’s priorities.

Given P1 one can conclude that, if 2-neighbors are
to exchange priority bits correctly, they need to agree
on a common time reference prior to the transmission
of priority bits, therefore:
P2) Synchronization between 2-neighbors must be

achieved before the start of the tournament.
This proposition (P2) does not assume that the

synchronization will be perfect, but it does assume that
the spacing between transmission of priority bits and
the priority bits themselves will have a duration that
takes into account the synchronization error.

Consider the problem of achieving synchronization
between 2-neighbors. Nodes are not assumed to be
synchronized in any way prior to running the MAC
protocol. It is necessary to achieve a common time
reference, with a bounded error, only using carrier
pulses. Next, we discuss how to accomplish this.

Consider first the problem of single-hop
synchronization. In CAN [9], this is performed by
letting a node wait for a long period. If the node hears
that the carrier makes a transition from idle to busy
then it resets its timer. Otherwise the node waits for a
short while extra and if it still has not heard a carrier
then it transmits a carrier and resets its timer. To make
such scheme work across two hops, the
synchronization carrier must be retransmitted. One
solution is to let a node retransmit every carrier heard
in the synchronization phase. If this is not done then a
node must be able to decide from the carrier wave used
in synchronization if the carrier has propagated one
hop or two hops. The only way to do so (without out-
of-band signaling) is to detect a pattern or a duration of
the carrier used for synchronization. However many
unsynchronized nodes may initiate synchronization
and cause the patterns to overlap and this makes it

impossible for receivers to detect the pattern, making it
impossible for a node to detect whether a carrier wave
used for synchronization has propagated one, two or
more hops away. This implies that:
P3) The carrier pulse used to achieve

synchronization must be propagated
throughout the entire network.

The negative performance impact of P3 is (as we
will see in Section 4) very small due to two reasons.
First, although P3 states that synchronization pulses
must be propagated throughout the entire network, it is
still possible for many nodes to transmit data messages
in parallel. Second, the duration of a priority bit is
affected by the synchronization error between 2-
neighbors but it is independent of the synchronization
error between any two nodes in the networks and
hence it is independent of the network diameter.

Let us now study the case of a node with a pending
data message to send. This node has performed a
tournament and lost, and now it must have the
opportunity to start another tournament (by sending a
synchronization pulse). Let D in Figure 2 denote this
node and let S denote the node that won the
tournament. After the end of the tournament, node S
proceeds to send its data message and neighboring
nodes of S that receive the message will know the
finishing time of the transmission. But other nodes will
not know. Consequently, it holds that:
P4) If transmission times are unknown then it is

impossible for all nodes to know the finishing
time of the latest parallel transmission after a
tournament.

It would be possible to circumvent P4 by
propagating data messages network wide but we reject
that idea because (i) it would preclude parallel
transmissions and (ii) the accuracy of the
synchronization from the finishing time of the latest
parallel transmission would depend on the diameter of
the network.

3. The Proposed Protocol

This section presents the design of a dominance
protocol for wireless networks, based on the
propositions stated previously (Section 2.3).

Let us start by addressing the first design
proposition (P1). To propagate a priority bit two hops
away, the transmission of priority bits is carried out in
two phases. This is detailed in Figure 3. For each
priority bit, from bit index 0 to npriobits-1, procedure
Bit_Contention is called. It assumes that (i) nodes
are already synchronized and (ii) the duration of the
priority bits (timeout constant H) and the time interval

Input
 prio: array containing the priority bits;
 i: current priority bit index;
 winner: initialized to TRUE at the beginning of the tournament in

all nodes with pending messages; otherwise, initialized to FALSE;
Global Variables
 heardDOMbit1, heardDOMbit2, heardDOMbit : indicate if a

dominant bit was heard;
Constants
 H: timeout constant for the duration of a priority bit;
 G: timeout of the interval between priority bits – “Guard band”;
 DOMINANT: value of a dominant bit (zero);
 RECESSIVE: value of a recessive bit (one);
procedure BC_Phase1()
begin
 if prio[i] = DOMINANT AND winner=TRUE then
 transmit DOMINANT for H time units
 else
 monitor the medium for H time units
 if transmission of DOMINANT bit is detected then
 heardDOMbit1 ← TRUE
 endif
 endif
end

procedure BC_Phase2()
begin
 if heardDOMbit1 = TRUE then
 transmit DOMINANT for H time units
 else
 monitor the medium for H time units
 if transmission of DOMINANT bit is detected then
 heardDOMbit2 ← TRUE
 endif
 endif
end

procedure Bit_Contention()
begin
 heardDOMbit1 ← heardDOMbit2 ← heardDOMbit ← FALSE
 call BC_Phase1()
 sleep for G time units
 call BC_Phase2()
 heardDOMbit ← heardDOMbit1 OR heardDOMbit2
 if winner = TRUE AND heardDOMbit = TRUE AND
 prio[i] = RECESSIVE then
 winner ← FALSE
 endif
end

Figure 3. Bit contention.

between transmission of priority bits (the guard band;
timeout constant G) are defined such that the
synchronization error is taken into account (later we
will discuss how to choose the values for H and G). In
the beginning of the tournament, all nodes with
pending messages are potential winners, and thus
variable winner is initialized to TRUE.

Procedure Bit_Contention executes the two
phases of bit contention. In the first phase (executed by
procedure BC_Phase1), each node sends its own
priority bits. That is, if a node is contending with a
dominant priority bit, it will transmit a carrier for H
time units; if a node is contending with a recessive bit,

it will monitor the medium for the same amount of
time. A node contending with a recessive bit that
detects the transmission of a dominant bit by another
node, will set variable heardDOMbit1 to TRUE. Then,
after waiting for the time interval between priority bits,
nodes proceed to execute the second phase of bit
contention, by calling procedure BC_Phase2. In this
phase, nodes which during the first phase contended
with a recessive bit and detected a dominant bit will
transmit a dominant bit. Nodes which contended with a
dominant bit, or did not hear a dominant bit in the first
phase will monitor the medium. If they detect the
transmission of a dominant bit by another node, then
variable heardDOMbit2 is set to TRUE. After the end
of the second phase, nodes which detected a dominant
bit in either phases and contended with a recessive bit,
have lost the tournament and set winner to FALSE.

This describes the design of the tournament in the
proposed protocol. To continue the discussion of the
protocol design, let us introduce the protocol
automaton, presented in Figure 4. The protocol is
illustrated using timed-automata like notation. States
are represented as vertices and transitions are
represented as edges. An edge is described by its guard
(a condition which has to be true in order for the
protocol to make the transition) and an update (an
action that occurs when the transition is made). In
figures, we let “/” separate the guards and the updates;
the guards are before “/” and the update is after. We let
“=” denote test for equality and let “:=” denote
assignment to a variable. States are numbered from 0
to 17. State 0 is the initial state. Associated to each
node the following variables are considered: a clock x;
an integer i within the range 0..npriobits-1; an integer
prio occupying npriobits bits; an integer
winner_prio occupying npriobits bits and a boolean
variable winner. Let winner_prio[i] denote the bit i
in the variable winner_prio, and analogously for
prio[i].

Eight functions can be called in a node:
initRadio(); radioTestMode();
radioDataRxMode(); startTx(); carrierOn();
carrierOff(); carrierSenseOn() and
carrierSenseOff(). The function initRadio() is
used to perform any initialization on the radio chip and
to set it into a known starting state.
radioTestMode() sets the radio into a mode where it
is able to transmit unmodulated carrier pulses. The
function radioDataRxMode() prepares the radio to
receive a data packet. startTx() instructs the radio
to transmit the data message passed as argument. The
function carrierOn() starts transmitting a carrier
and continues doing so until function carrierOff()

is called. Function carrierSenseOn()is used to set
the radio into receive and starts detecting carrier
pulses, while carrierSenseOff()is called to stop
detecting carrier pulses. The symbol “carrier?” is
used in the timed-automata of Figure 4 with the
following meaning: sense for a carrier and if there is a
carrier then “carrier?” is true. Several different
timeout values are used. These timeouts (C, E, F, G, H,
TFCS, SWXTX and SWXRX) are constants. The values
of these timeouts are discussed later in this paper.

To describe the main concept of the 2-neighbour
synchronization made, we will study the simple
sequence of state transitions that nodes can take to
synchronize after they boot, by observing Figure 4.
After initializing the radio, nodes move to State 1.
Transition 1→2 ensures that the radio changes to
receive mode and monitors the medium for time
enough to detect if the medium is idle or not. In State
2, nodes wait for a long duration of silence (denoted by
F), such that no node disrupts a tournament being
performed by other nodes. Then nodes with pending
messages perform transition 3→4 after waiting for E
time units, guaranteeing that other nodes have time to
reach State 3. Nodes that make the transition 3→4 start
sending a carrier pulse in order to synchronize. Other
nodes may take one of the two following sequence of
state transitions: (i) a node is in State 3 and has
pending messages and it does not hear a carrier for E
time units so it makes the transition 3→4, or (ii) a node
in state 3 (either because it is waiting to make
transition 3→4, or does not have pending messages)
can detect the carrier pulse being sent by other nodes
and perform transition 3→5. Nodes making transition
3→5 start transmitting the synchronization carrier
pulse and immediately reset their timers, but nodes
making transition 3→4 wait for SWXTX to reset their
timers because only at that time the carrier pulse is
actually being transmitted. Nodes then stay in State 5
sending the carrier pulse and make transition 5→8
after 3H time units. At this point nodes stop sending
the carrier pulse and synchronization ends with nodes
resetting their timers.

Notice that this procedure respects propositions P2,
as it will achieve a common reference point in time
between 2-neighbours. This time reference will have
an error, but this error is bounded and accountable for
in the lengths of priority bits and intervals between
priority bits. Proposition P3 is also respected because
all nodes will either start a tournament themselves
(thus send a synchronization pulse) or detect and
retransmit a synchronization pulse. We can observe, in
Figure 4, that nodes can actually take different

sequences of state transitions to synchronize. Section 3.1 discusses all

tournament

tx/rx data message

synchronization

10

x>=3H/
x:=0

14

x>=SWXRX+TFCS/
x:=0

9

11

x>=H+G+(2G+2H)*i/
if (prio[i]=0 AND winner=TRUE) then
 carrierOff()
else
 carrierSenseOff()
end if

1213

i<npriobits-1/
i:=i+1

i=npriobits-1 AND x>=G+(2G+2H)*npriobits/
x:=0
radioDataRxMode()

winner=TRUE AND x>=H/
startTx(sendMsg)

winner=FALSE/
if (listen=FALSE) enqueue(sendMsg)

carrier?/
heardDOMbit1:=TRUE

winner_prio[i]:=0

carrier?/
heardDOMbit2:=TRUE

winner_prio[i]:=0

x>=G+(2G+2H)*i/
heardDOMbit1:=FALSE
heardDOMbit2:=FALSE
if (prio[i]=0 AND winner=TRUE) then
 winner_prio[i]:=0
 carrierOn()
else
 winner_prio[i]:=1
 carrierSenseOn()
end if

x>=2H+2G+(2G+2H)*i/
if (heardDOMbit1=TRUE) then
 carrierOff()
else
 carrierSenseOff()
end if
heardDOMbit = (heardDOMbit1 OR heardDOMbit2)
if (winner=TRUE AND
 heardDOMbit=TRUE AND prio[i]=1) then
 winner :=FALSE
end if

x>=H+2G+(2G+2H)*i/
if (headDOMbit1=TRUE) then
 carrierOn()
else
 carrierSenseOn()
end if

2

x>=F/
x:=0

carrier?/
x:=0

3

x>=E AND msgQueue≠EMPTY/
carrierSenseOff()
carrierOn()

4

5

carrier?/
carrierSenseOff()
carrierOn()
x:=0

x>=E+SWXTX/
x:=0

0

/
initRadio

radioTestMode()
carrierSenseOn()

x:=0

1

15x>=H+C/
x:=0
radioTestMode()
carrierSenseOn()

6

no carrier?/
x:=0

x>=3H-TFCS/

8

/
carrierOff()
i:=winner_prio:=0
if (msgQueue EMPTY) then

winner:=TRUE
listen:=FALSE
sendMsg:=dequeueHPMsg()
prio:=sendMsg.prio

else
winner:=FALSE
listen:=TRUE
sendMsg:=NULL
prio:=INVALID_PRIO

end if

7

x>=3H/
x:=0

16

x>=SWXRX+TFCS/
x:=0

17

x>=E+TFCS/
x:=0

carrier?/
carrierSenseOff()
carrierOn()
x:=0

Timeouts used:
 C - Timeout to wait for receive/transmit messages;
E - Timeout to cope with synchronization imperfections (such as clock inaccuracies and transmit/receive switching times).

 F - Initial idle period of silence;
G - Gap between the bits in the tournament;

 H - Duration of a bit in the tournament;
SWXTX - Time that the radio takes to switch between idle and transmit mode.
SWXRX - Time that the radio takes to switch between idle and receive mode.

Figure 4. Protocol state automaton.

possible sequences nodes can take to synchronize,
along the resulting synchronization error. By looking
at transition 15→16 in Figure 4, the solution used for
approaching proposition P4 becomes obvious. The
solution was to withdraw one of its assumptions: In

Section 2.3 it was assumed that nodes had no
knowledge of message transmission times. However
this meant that it was impossible that all nodes know
the finishing time of the latest parallel transmission
after a tournament. The solution is to have nodes

knowing an upper bound on the message transmission time for the whole network, defined by the timeout

Figure 5. Synchronization scenarios.

constant C. In this way, all nodes know exactly how
much time they should wait for messages to be
transmitted or received, regardless of whether they are
able to receive them or not.

3.1. Analyzing the Synchronization Error
As observed in the previous section, the

synchronization error influences the duration of the
priority bits in the tournament and the time between
them. Therefore we now look into the synchronization
error by studying the possible scenarios for nodes to
achieve synchronization. Figure 5a presents the first
scenario. Consider two neighbor nodes N1 and N2, both
with pending messages. Node N1 enters State 3 at time
t1, and stays here for E time units, to ensure that other
nodes have time to reach State 3. In a worst case
scenario, a node N2 will enter State 3 exactly at the
same time node N1 leaves State 3, at time t2. Let us
assume (later we show this is true) that E is a time
duration smaller that the time need for a node to switch
from idle to transmit plus the time necessary for the
other node to detect a carrier pulse. That is,
E ≤ SWXTX + TFCS. Then N2 will never detect the
carrier being sent by node N1, and thus will move on to
State 4 and, after this, nodes will do exactly the same
transitions, but with E time units of difference between

them, as illustrated in Figure 5a. Finally, nodes finish
synchronization at times t3 and t4 with a
synchronization error of E.

The next scenario depicted in Figure 5b considers
again two neighbor nodes N1 and N2, but now only N1
has pending messages. Node N1 reaches State 3 at time
t5, and after E time units, it proceeds to State 4. At this
point, N1 instructs the radio to start sending a carrier
pulse, and this carrier pulse will actually start being
transmitted after SWXTX time units. Let us now
consider node N2. Node N2 has no message to send,
and thus, after entering State 3 and waiting for E time
units, it will stay in this state. Figure 5b shows the time
that N2 can enter State 5 in order to participate in the
next tournament, time t7. Observe that, in order to
reach State 5 at this time, node N2 must therefore be in
State 3 at most TFCS time units before time t7. In such
scenario, node N2 makes the transition 3→5 because it
detects the synchronization carrier from other node.
After this, nodes enter State 8 at time t8 and t9 with a
maximum error of TFCS time units.

Observing the automaton in Figure 4, we see that a
similar state transition sequence (N2 enters state 17
E+TFCS time units before time t7) can occur because a
node in State 17 can make transition 17→5 if it detects
the synchronization carrier from the other node.

The third synchronization scenario in Figure 5c
depicts another sequence of state transitions nodes can
take to synchronize. Again consider two neighbor
nodes N1 and N2, where only N1 has pending messages.
Node N1 proceeds as before, entering State 3 at time t10
and reaches State 4 E time units after. Node N2 is
waiting to observe a long period of silence, but if it
detects a carrier pulse, N2 will make transition 2→6. If
the carrier pulse detected is a synchronization pulse,
node N2 stays in State 6 long enough to perform
transition 6→7. As illustrated in Figure 5c, this will
cause node N2 to reach State 8 with a maximum
difference of TFCS time units of N1.

The three synchronization scenarios presented
depict the synchronization between two neighbor
nodes. However, the synchronization error must be
studied between 2-neighbors, and Figure 5d does this.
Consider three nodes N1, N2 and N3. Nodes N1 and N2
perform the same sequence of state transitions as in
Figure 5a, already described. Node N3 detects the
retransmission of the carrier pulse made by node N2 at
time t18. Consequently, N3 reaches State 8 TFCS time
units after time t20, when node N2 reached State 8 and
E+TFCS after node N1 that reached state 8 ate time t19.
The sequence of state transitions made by node N3 in
this scenario is similar to the one made by N2 in Figure
5b, and likewise node N3 could be in State 17 E+TFCS
time units before time t18, and take transition 17→5.

Observe that N3 can take a sequence of state
transitions similar to node N2 in Figure 5c, and thus
reach state 8 TFCS time units after N2 and 2*TFCS
after node N1.

By the previous synchronization scenarios studied,
one can observe that the maximum synchronization
error between 2-neighbors δ is:

δ = max(E+TFCS,2*TFCS) (1)

It is necessary to select time-out parameters to
ensure that synchronization before the tournament
works and that the synchronous behavior in Figure 3 is
achieved. See Appendix A in [TR] for details on how
to do this. This gives us the following properties:
1. Collision-free. There is no pair of nodes (X, Y)

such that (i) X is a 2-neighbor of Y and (ii) X and Y
are both in state 15 and (iii) the variable winner
in X and Y are TRUE simultaneously.

2. Progress. Consider a node X that requests to
transmit. If for every 2-neighbor node Y of X it
holds that prio(Y) > prio(X) then node X must have
the variable winner equal to TRUE.

3. Prioritization. If a node X requests to transmit and
node X is in state 15 and its variable winner is
equal to FALSE then there is a node Y such that (i)

Y is a 2-neighbor of X and (ii) Y requests to
transmit and (iii) Y has higher priority than X.

4. Experimental Evaluation

We have implemented the protocol in OMNet++
and ran it with several hours of simulated time. We
detected whether the correctness properties collision-
free, progress and prioritization were satisfied for
channels with no noise. We found that the correctness
properties were satisfied.

5. Related Work

There has been a significant amount of research on
MAC protocols aiming at goals such as fairness or
high throughput. Here, we will only focus on works
relevant to the problem of scheduling sporadic
messages with deadlines and on fully distributed
algorithms.

The introduction of the wireless LAN standard

IEEE 802.11 stimulated the development of many [10-
15] prioritized Carrier Sense Multiple Access (CSMA)
MAC protocols and a few of them [10-12] were
adopted for the real-time profile IEEE 802.11e.
Another technique [16], not based on IEEE 802.11, is
to implement prioritization using two separate narrow
band busy-tones to communicate that a node is
backlogged with a high-priority message. This
technique has the drawback of requiring specialized
hardware (for listening to the narrow band signals),
requires extra bandwidth (for the narrow band signals)
and it supports only two priority levels. We believe
that this out-of-band signaling solution [16] can be
extended to k priority levels (although the authors do
not mention it), but doing so would require 2k narrow
band signals. Unfortunately, all [10-16] of these MAC
protocols can suffer from collisions making it
impossible to prove that timing requirements are
satisfied.

MAC protocols have also been proposed from the
real-time systems community with the goal of meeting
deadlines. They are collision-free. Some protocols use
tables (sometimes called TDMA templates) with
explicit start times for message transmissions. These
tables are created at run-time in a distributed fashion
[17] or by a leader [18]. It is also conceivable to use a
TDMA template designed before run-time [19] and use
it to schedule wireless traffic. However, all these time-
table approaches have the drawback of requiring that
sporadic message streams are dealt with using polling,
which is inefficient. Another approach, Implicit-
EDF [20], is based on the assumption that all nodes
know the traffic on the other nodes that compete for

the medium, and all these nodes execute the EDF
scheduling algorithm. If the message selected by the
EDF scheduling algorithm is in the node’s queue of
outgoing messages then the node transmits this
message, otherwise it does not transmit. Unfortunately,
this algorithm is based on the assumption that a node
knows the arrival time of messages on other nodes, and
this implies that polling must be used to deal with
sporadic message streams.

The dominance protocol [2] performs a tournament
among the messages that request to transmit, and the
winner will transmit. It uses global priorities, can
schedule sporadic message streams and it is collision-
free. Unfortunately, it requires that a node has the
ability to receive an incoming bit from the channel
while transmitting to the channel. Such a behavior is
impossible on a wireless channel due to the large
difference in transmitted energy and the received
energy. Two attempts ([21] and [22-24]) have been
made to migrate the dominance protocol to the
wireless context. Both of them modulate the priority
bits using on-off keying, encoding a dominant bit as
the transmission of a carrier and a recessive bit as
silence. In this way a node transmitting a recessive bit
can detect a dominant bit and this node will withdraw.
Our previous work [21] provided prioritization and
was collision-free. Unfortunately it was designed to
operate in non multi-hop networks. The other approach
[22-24] was designed to operate in multihop networks
but it has several shortcomings. First, it claims to solve
the hidden node problem (the hidden node problem
will be explained in Section 2.2), but actually it only
offers a partial solution. A sending node transmits a
busy tone on a separate channel and this tone has
higher transmission power (or the receivers for the
tone are more sensitive) so it has double the range as
compared to the range of data transmission. This does
not work in the case where two source nodes request to
transmit to a receiving node and the two source nodes
are close to each other but a communication obstacle
keeps them hidden from each other. (This scenario is
also discussed in Figure 5 in [16]). Second, in a
network with n nodes it can happen that only one node
transmits although it would be possible for n/3 nodes
to transmit in parallel (the authors of [22-24] actually
mention this in Figure 3 and Figure 4 in [22], no
solution is offered).

6. Conclusions

We have proposed a MAC protocol that is
prioritized and collision-free in the presence of hidden
nodes. It achieves this without base stations and
without relying on out-of-band signals. This work

offers a solid foundation for schedulability analysis
techniques for wireless networks (for example [8]).

References

[1] A. Mok, "Fundamental Design Problems of Distributed
Systems for the Hard Real-Time Environment," in
Electrical Engineering and Computer Science
Cambridge, Mass.: Massachusetts Institute of
Technology, 1983.

[2] A. K. Mok and S. Ward, "Distributed Broadcast Channel
Access," Computer Networks, vol. 3, pp. 327-335, 1979.

[3] K. Tindell, H. Hansson, and A. Wellings, "Analysing
real-time communications: controller area network
(CAN)," in 15th Real-Time Systems Symposium
(RTSS'94), 1994, pp. 259-263.

[4] T. You, C.-H. Yeh, and H. S. Hassanein, "CSMA/IC: A
New Class of Collision-free MAC Protocols for Ad Hoc
Wireless Networks," in 28th IEEE International
Symposium on Computers and Communication
(ISCC'03), 2003, pp. 843-848.

[5] B. Andersson and E. Tovar, "Static-Priority Scheduling
of Sporadic Messages on a Wireless Channel," in 9th
International Conference on Principles of Distributed
Systems (OPODIS'05), Pisa, Italy, 2005.

[6] N. Pereira, B. Andersson, and E. Tovar, "Implementation
of a Dominance Protocol for Wireless Medium Access,"
in Proc. of 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications (RTCSA'06), Sydney, Australia, 2006.

[7] Chipcon, "http://www.chipcon.com/files/CC2420_Data_
Sheet_1_3.pdf."

[8] T. F. Abdelzaher, S. Prabh, and R. Kiran, "On Real-Time
Capacity Limits of Multihop Wireless Sensor Networks,"
in IEEE International Real-Time Systems Symposium,
Lisbon, Portugal, 2004, pp. 359-370.

[9] Bosch, "CAN Specification, ver. 2.0, Robert Bosch
GmbH, Stuttgart," 1991.

[10] I. Aad and C. Castelluccia, "Differentiation
Mechanisms for IEEE 802.11," in Infocom, 2001, pp.
209-218.

[11] M. Barry, A. T. Campbell, and V. Andras, "Distributed
Control Algorithms for Service Differentiation in
Wireless Packet Networks," in Infocom, 2001.

[12] D.-J. Deng and C. Ruay-Shiung, "A Priority Scheme
for IEEE 802.11 DCF Access Method," IEICE
Transactions on Communication, vol. E82-B, pp. 96-102,
Jan 1999.

[13] J.-P. Sheu, C.-H. Liu, S.-L. Wu, and Y.-C. Tseng, "A
priority MAC protocol to support real-time traffic in ad
hoc networks," Wireless networks, vol. 10, pp. 61-69,
2004.

[14] J. L. Sobrinho and A. S. Krishnakumar, "Real-time
traffic over the IEEE 802.11 medium access control
layer," Bell Labs Technical Journal, vol. 1, pp. 172-187,
Autumn 1996.

[15] J. L. Sobrinho and A. S. Krishnakumar, "Quality-of-
Service in ad hoc carrier sense multiple access
networks.," IEEE J. Selec. Areas Commun., vol. 17, pp.
1353--1368, August 1999.

[16] X. Yang and N. Vaidya, "Priority Scheduling in
Wireless Ad Hoc Networks," Wireless networks.

[17] W. C. Thomas, A. B. Moussa, B. Rajeev, and B. S.
David "Contention-Free Periodic Message Scheduler
Medium Access Control in Wireless Sensor / Actuator
Networks," in IEEE Real-Time Systems Symposium,
Cancun, Mexico, 2003, pp. 298-307.

[18] H. Li, P. Shenoy, and K. Ramamrithan, "Scheduling
Communication in Real-Time Sensor Applications," in
IEEE Real-Time and Embedded Technology and
Applications Symposium, Toronto, Canada, 2004.

[19] H. Kopetz and G. Grunsteidl, "TTP-a protocol for fault-
tolerant real-time systems," IEEE Computer, vol. 27, pp.
14-24, 1994.

[20] M. Caccamo and L. Y. Zhang, "An Implicit Prioritized
Access Protocol for Wireless Sensor Networks," in 23rd
IEEE Real-Time Systems Symposium (RTSS'02), Austin,
Texas, 2002, pp. 39-48.

[21] B. Andersson and E. Tovar, "Static-Priority Scheduling
of Sporadic Messages on a Wireless Channel," in
International Conference on Principles of Distributed
Systems (OPODIS´05), Pisa, Italy, 2005.

[22] T. You, C.-H. Yeh, and H. S. Hassanein, "CSMA/IC: A
New Class of Collision-free MAC Protocols for Ad Hoc
Wireless Networks," in 8th IEEE International
Symposium on Computers and Communication, 2003, pp.
843-848.

[23] T. You, C.-H. Yeh, and H. S. Hassanein, "A New Class
of Collision - Prevention MAC Protocols for Ad Hoc
Wireless Networks," in IEEE International Conference
on Communications, 2003.

[24] T. You, C.-H. Yeh, and H. S. Hassanein, "BROADEN:
An efficient collision-free MAC protocol for ad hoc
wireless networks," in IEEE International Conference on
Local Computer Networks, 2003.

Appendix A: Design Parameters and
Correctness

In this section we discuss the correctness of the
protocol and demonstrate how assigning values to the
constants C, E, F, G, H, TFCS, SWXTX and SWXRX
affect the correctness.

The protocol must satisfy the following three
relevant properties.
1. Collision-free. There is no pair of nodes (X, Y)

such that (i) X is a 2-neighbor of Y and (ii) X and Y
are both in state 15 and (iii) the variable winner
in X and Y are TRUE simultaneously.

2. Progress. Consider a node X that requests to
transmit. If for every 2-neighbor node Y of X it
holds that prio(Y) > prio(X) then node X must have
the variable winner equal to TRUE.

3. Prioritization. If a node X requests to transmit and
node X is in state 15 and its variable winner is
equal to FALSE then there is a node Y such that (i)
Y is a 2-neighbor of X and (ii) Y requests to
transmit and (iii) Y has higher priority than X.

These properties hold if the following protocol
constraints (C1 – C5) are respected.
C1) When a node transmits a dominant bit in iteration

i in the tournament, it is received by all other nodes
and it is perceived to be received in iteration i.

Implications:
Consider an iteration of the tournament. It must

have been sufficient overlap between the time interval
where one node transmits the carrier to inform that it
has a dominant bit and the time interval where a node
with a recessive bit listens for nodes with a dominant
bit. Due to clock drift and inaccuracy of
synchronization, this overlap becomes smaller and
smaller with the iterations within the tournament.
Hence the last iteration (the worst scenario) of the
tournament is considered and the following constraint
can be derived:

() ()[] []
() ()[] []

SWXRXTFCSLCLK
npriobitsGHGH

npriobitsGHGHH

222
11223

11223

+>−−−
−+×−×+++

−−×−×++++

δα
ε

ε
(2)

Equation (2) guarantees that even in the presence of
worst-case clock inaccuracies, all nodes will hear a
dominant bit for at least the time necessary to detect a
carrier (TFCS).
C2) If a node Ni has perceived a time of silence long

enough (F time units) to make the transition 2→3 but
other nodes perceive the duration of silence to be less
than F time units so far due to different time-of-
flights and clock-imperfections, then node Ni needs to

wait until all nodes have perceived this long time of
silence.

Implications:
The protocol must stay in State 2 for E time units to

ensure this, and the following protocol constraint is
derived:

ETFCS
TFCSSWXRXFLCLK

<
+×+++++ εα 2)(22

(3)

C3) With similar reasoning as for C2, a node which
has won the tournament must wait H time units
before transmission (this waiting occurs in 14→15)
to be sure that all losing nodes have reached State
15.

Implications:
H must satisfy the following constraint:

() ()[]
HLCLK

npriobitsGHGHH
<+++

+×−×++++
δα

ε
22

21223
(4)

C4) During the tournament, the maximum time
interval of idle time should be less than F, the initial
idle period.

Implications:
This assures that if one node makes the transition

from State 2 to State 3 (the initial idle time period)
then all nodes will do it at most E time units later.
Therefore, the following protocol constraint must be
satisfied:

() () []
[] [] FTFCSLCLKH

TFCSETFCSSWXRXCHG
npriobitsGHGHH

<++++−×

−+×⎥
⎦

⎤
⎢
⎣

⎡
++++++

+−×++++

αε

ε

2213

1
1223

(5)

C5) The time interval between two successive
dominant bits must be long enough to assure that no
node interprets the first dominant bit to be
transmitted in the time interval for the second
dominant bit.

Implications:
The worst case occurs when these two bits are the

last ones in the tournament. Therefore, the following
protocol constraint must be satisfied:

() ()[] []
() ()[] []

022
11223

12223

>−−−−
+×−×+++

−−×−×++++

δα
ε

ε

LCLK
npriobitsGHHH
npriobitsGHGHH

(6)

C6) Transition 6→7 cannot occur when a node is
transmitting a message (a message transmission is
detected as a carrier, if nodes are performing carrier
detection):

TFCSSWXTXCH ++>=3 (7)

C7) Transition 15→16 takes, at least, the time to
transmit/receive the longest message in the network.

}max{ {i..n} i iCC ≥∈∀ (8)

The values of C, E, F, G and H must be selected

such as they satisfy (2)-(8). The selection of TFCS,
SWXRX and SWXTX is imposed by the implementation
platform chosen. For the CC2420 transceiver [6, 7] we
obtain: E=620µs, F=44990µs, G=1210µs, H=2390µs,
C=4224µs.

