

Collision-Free Prioritized Medium Access Control
in Wireless Networks with Hidden Nodes

Björn Andersson
Nuno Pereira
Eduardo Tovar

www.hurray.isep.ipp.pt

Technical Report

TR- 060201
Version: 1.0

Date: 6 February 2006

Collision-Free Prioritized Medium Access Control in Wireless
Networks with Hidden Nodes

Björn ANDERSSON, Nuno PEREIRA, Eduardo TOVAR

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {bandersson, npereira, emt}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
We propose a collision-free medium access control (MAC) protocol, which implements static-priority scheduling and
works in the presence of hidden nodes. The MAC protocol allows multiple masters and is fully distributed; it is an
adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol
does not require a node having the ability to sense the channel while transmitting to the channel. Our protocol is
collision-free even in the presence of hidden nodes and it achieves this without synchronized clocks or out-of-band busy
tones. In addition, the protocol is designed to ensure that many non-interfering nodes can transmit in parallel and it
functions for both broadcast and unicast transmissions.

Keywords: MAC protocol, collision-free, multihop networks, real-time communication

1 Introduction

A fundamental problem in the design of distributed real-time systems is the sharing of a wireless
communication channel such that timing requirements are satisfied. This sharing it achieved using a so-
called MAC protocol, which solves the distributed mutual exclusion problem among the set of computer
nodes that request to transmit. However, solving the mutual exclusion problem is not enough, it is also
necessary to take the timing requirements of the message transmission requests into account during run-time.
Periodic message transmission requests can be scheduled using static table-driven scheduling. Sporadic [1]
and aperiodic [2] messages requests can be scheduled by using polling but, unfortunately, such an approach
is inefficient when the relative deadline is short as compared to the minimum inter-arrival time between two
consecutive requests. An intuitive alternative approach is to assign a static priority to a message, and use a
medium access control (MAC) protocol that selects for transmission the message with the highest priority.
This approach has been used in wired networks [3] and have recently [4-7] been proposed for wireless
networks. But unfortunately they do not work in networks with multiple hops because the protocols suffer
from several well-known phenomena (which will be described in detail later): hidden nodes and exposed
nodes.

In this paper we develop such a MAC protocol without those drawbacks. Our protocol assumes that message
streams are assigned unique priorities (for example: from an algorithm such as Deadline Monotonic [8], from
the identifier of the node and message stream id or a combination). Hence, it is possible to design a
dominance protocol [9] (similar to the one used in the CAN bus [10]) where nodes contend bit-by-bit.
However, the wireless channel requires special care because (i) a node cannot sense and transmit
simultaneously, (ii) the presence of hidden nodes can cause collisions and (iii) prioritization can inhibit the
parallel transmission of non-interfering nodes if prioritization is implemented poorly. Hence, the dominance
protocol requires a redesign − something that we do.

The remainder of this paper is structured as follows. Section 2 discusses related work and their ability to
support sporadic messages on a wireless channel. Section 3 presents the system model with our assumptions
and terminology. Section 4 highlights key design issues about the protocol; due to space limitations, a
precise statement of the protocol is given in Appendix A and Appendix B. Finally, conclusions are drawn in
Section 5.

2 Related work

There has been a significant amount of research on MAC protocols aiming at goals such as fairness or high
throughput. Here, we will only focus on works relevant to the problem of scheduling sporadic messages with
deadlines and on fully distributed algorithms. We will first (in Section 2.1.) review related work in
prioritized MAC protocols and then (in Section 2.2.) review related work dealing with the special
requirements of MAC protocols in multihop networks.

2.1 Prioritized medium access control
The introduction of the wireless LAN standard IEEE 802.11 stimulated the development of many [11-16]
prioritized Carrier Sense Multiple Access (CSMA) MAC protocols and a few of them [11-13] were adopted
for the real-time profile IEEE 802.11e. Another technique [17], not based on IEEE 802.11, is to implement
prioritization using two separate narrow band busy-tones to communicate that a node is backlogged with a
high-priority message. This technique has the drawback of requiring specialized hardware (for listening to
the narrow band signals), requires extra bandwidth (for the narrow band signals) and it supports only two
priority levels. We believe that this out-of-band signaling solution [17] can be extended to k priority levels
(although the authors do not mention it), but doing so would require 2k narrow band signals. Unfortunately,
all [11-17] of these MAC protocols can suffer from collisions making it impossible to prove that timing
requirements are satisfied.

MAC protocols have also been proposed from the real-time systems community with the goal of meeting
deadlines. They are collision-free. Some protocols use tables (sometimes called TDMA templates) with
explicit start times for message transmissions. These tables are created at run-time in a distributed fashion

[18] or by a leader [19]. It is also conceivable to use a TDMA template designed before run-time [20] and
use it to schedule wireless traffic. However, all these time-table approaches have the drawback of requiring
that sporadic message streams are dealt with using polling, which is inefficient. Another approach, Implicit-
EDF [21], is based on the assumption that all nodes know the traffic on the other nodes that compete for the
medium, and all these nodes execute the EDF scheduling algorithm. If the message selected by the EDF
scheduling algorithm is in the node’s queue of outgoing messages then the node transmits this message,
otherwise it does not transmit. Unfortunately, this algorithm is based on the assumption that a node knows
the arrival time of messages on other nodes, and this implies that polling must be used to deal with sporadic
message streams.

The dominance protocol [9] performs a tournament among the messages that request to transmit, and the
winner will transmit. It uses global priorities, can schedule sporadic message streams and it is collision-free.
Unfortunately, it requires that a node has the ability to receive an incoming bit from the channel while
transmitting to the channel. Such a behavior is impossible on a wireless channel due to the large difference in
transmitted energy and the received energy. Two attempts ([7] and [4-6]) have been made to migrate the
dominance protocol to the wireless context. Both of them modulate the priority bits using on-off keying,
encoding a dominant bit as the transmission of a carrier and a recessive bit as silence. In this way a node
transmitting a recessive bit can detect a dominant bit and this node will withdraw. Our previous work [7]
provided prioritization and was collision-free. Unfortunately it was designed to operate in non-multihop
networks. The other approach [4-6] was designed to operate in multihop networks but it has several
shortcomings. First, it claims to solve the hidden node problem (the hidden node problem will be explained
in Section 2.2), but actually it only offers a partial solution. A sending node transmits a busy tone on a
separate channel and this tone has higher transmission power (or the receivers for the tone are more
sensitive) so it has double the range as compared to the range of data transmission. This does not work in the
case where two source nodes request to transmit to a receiving node and the two source nodes are close to
each other but a communication obstacle keeps them hidden from each other. (This scenario is also discussed
in Figure 5 in [17]). Second, in a network with n nodes it can happen that only one node transmits although it
would be possible for n/3 nodes to transmit in parallel (the authors of [4-6] actually mention this in Figure 3
and Figure 4 in [4], but they do not offer any solution).

2.2 Medium access control protocols for multihop networks
In multihop networks, a source node cannot reach a destination node with a single broadcast and this requires
that other nodes relay the message. These networks bring several new challenges to MAC protocols.

Exposed nodes. A node A requests to transmit to node C and another node B, which is close to A, requests
to transmit to node D. A and B can transmit simultaneously because their destinations (C and D) are far
apart. Although the transmissions will collide at A and B, they will not collide at C and D. The transmission
of a sender is exposed to another sender although they do not affect each other. A is said to be an exposed
node to B; and similarly, B is said to be an exposed node to A. The existence of exposed nodes reduces the
performance but it does not violate the correctness of reception. For this reason, the exposed node problem is
not considered to be severe. Some attempts to solve it exists though (MACA in [22] gives a partial solution;
the dual busy tone solution [23] is a fully functioning solution, and [24] attempts to find out the
sender/receiver roles of different nodes to achieve even more parallelism).

Hidden nodes. A node A requests to transmit to node C and another node B, which is far away from A,
requests to transmit to node C as well. A and B cannot sense each other´s transmissions and hence their
transmissions may collide at the receiver C. A is said to be a hidden node to B; and similarly, B is said to be
a hidden node to A. The existence of hidden nodes jeopardizes the correct reception of a message and hence
it has received serious attention from the research community.

The notion of hidden nodes was introduced early and a solution, called the busy tone solution, was proposed
and analyzed [25]. It that work, it was assumed that nodes communicate with a single base station, and the
base station can transmit to all nodes. Whenever a node transmits, the base station hears a carrier wave and
then the base station transmits a tone on a narrow band to all nodes. This prevents the hidden node problem.
In cases where there is no base station, a similar scheme, called receiver initiated busy-tone multiple access,
was proposed [26]. Here, an ordinary node (which is not a base station) listens for a carrier wave and when it
hears a carrier wave, it transmits a busy tone on a narrow band channel when it is receiving data (or has
heard one request to send), hence informing other senders that they should not transmit. Common to these

two solutions ([25] and [26]) is that they rely on a separate channel. The MACA protocol [22] was designed
to remove that limitation. In MACA, a node that requests to send a data packet, sends a Request-To-
Send (RTS) packet on the channel (there is only one) and then waits for the receiving node to transmit a
Clear-To-Send (CTS) packet to the sender’s id. Only then the node can transmit; all other nodes are not
permitted to transmit. Certain parameters were left unspecified in MACA so based on that, a more well-
defined protocol was proposed MACAW [27]. A common theme of these protocols is that collisions may
occur, even from non-hidden nodes.

To rectify this situation, a MAC protocol without collisions was designed and given the name FAMA-
NCS [28]. It is based on (i) a RTS-CTS dialogue but also on carrier sensing before transmission of RTS and
CTS and (ii) carefully selected lengths of these messages and intervals of silence. This ensures that collisions
between an RTS and a DATA packet cannot occur. Schemes with only RTS-CTS (and with no carrier
sensing) are explored as well. In order to ensure that a DATA packet does not collide with an RTS, it is
necessary that the receiving node sends a number of CTS which is large enough to be sure that all neighbor
nodes of the receiving node have received collision-free CTS. This implies that if carrier sensing is not used
then a sender needs to wait for a long time before it can transmit a data packet. Hence, it was concluded that
carrier sensing is necessary to implement collision-free MAC protocols efficiently [28]. (A related paper [29]
deals only with fully connected networks; that is, there are no hidden nodes). The CTS packet has the role of
the receiver informing the sender that it is OK to transmit. Another way to achieve the same effect is to let
the receiver be idle for a time duration if it is OK to transmit; if the receiver (or other nodes) detected a
collision between RTS packets then the receiver (or other nodes) transmits a jamming signal. If the Tx-Rx
turnaround time is larger than the time-of-flight (which is common), and there is only one sender and one
receiver, and there are no other nodes in the network, then this solution does not work.

Another solution to achieve collision-free transmission of DATA packets in the presence of hidden nodes is
to use the usual RTS-CTS dialog with no carrier sensing (just like MACA) but also use two busy tones on
separate channels. A tone (called BTt) is transmitted by the sender when it transmits a DATA packet and
another tone (called BTr) is transmitted when the receiver receives a DATA packet. The author proved that
this solution is collision-free [30]; it offers excellent throughput [23] and it also has the advantage of solving
the problem of exposed nodes. But, unfortunately it has the disadvantage of requiring extra bandwidth (for
the two busy tones) and specialized hardware (to detect those busy tones).

The FAMA protocol [28] ensures that DATA packets are collision-free but it is still possible for RTS packets
to collide if two RTS packets are transmitted from two different nodes and the difference between their
transmission times is less than the time of flight. In very high loads, this can cause the channel to only
transmit colliding RTS packets and hence the throughput of DATA packets drops to zero. To rectify this, a
protocol with collision resolution was proposed [31, 32]. It works as follows. When a node transmits a RTS
and it does not hear a CTS it concludes that the RTS collided. Then, only half of all nodes are permitted to
transmit the next RTS; the other half of nodes must wait. These groups are selected based on the ids of the
nodes. By repeating this procedure (called tree-splitting) eventually only one node transmits the RTS.

Priority inversion. Priority inversion means that a lower-priority message is transmitted before a higher-
priority message. This problem is well-known in uniprocessor scheduling (where tasks are prioritized rather
than messages) [33, 34]. In real-time communication, the same problem can occur due to the non-preemptive
nature of communication, so it is an issue in multihop networks too. In multihop networks, yet another, but
similar problem (called pseudo priority inversion) can occur too [35]. To understand this, consider three
sending nodes S1, S2 and S3, and two receiving nodes R1 and R2. S1 requests to send to R1; S2 and S3
request to send to R2. S2 is within the range of R1. S1 and S2 compete for R1. S2 and S3 compete for R2. S1
has higher priority than S2, which in turn has higher priority than S3. S1 will transmit because it has the
highest priority. S2 cannot transmit because it lost the competition against S1. S3 will transmit although it
competes with S2 which has higher priority; this is because S2 lost the competition against S1. It was also
shown that this effect can cause chains where a message is dependent on another message arbitrarily far
away.

We conclude in this section that there is only one [4-6] prioritized collision-free MAC protocol which works
in the presence of hidden nodes. As already mentioned, this solution is only a partial solution to the hidden
node problem and it can cause a large loss in the degree of parallelism. We need a MAC protocol without
those drawbacks.

3 System model

We consider computer nodes; which we often call simply nodes. On a node, applications make requests to
transmit and applications need to receive a subset of the messages that a node hears. The protocol does not
know about the origin of messages; two different messages may belong to the same sporadic message stream
with a minimum inter-arrival time or they may not.

Priorities. Messages are assigned unique priorities; these priorities are non-negative integers. Messages with
low numbers have high priority. As a result, we will say that if a bit is “0” then it is dominant and if a bit is
“1” then it is recessive. Let npriobits denote the number of bits required to represent the priorities. Let
prio[0..npriobits-1] be an array of bits representing the priority of a message. The most significant bit is
prio[0].

Propagation. We assume that the connectivity is described by a graph, such that when a node broadcasts, all
of its neighbors hear it. Hence, there are hidden nodes. Radio propagation may be different in different
directions. It may even happen that in one direction a node that is far away can be reached, but a node that is
closer and in the same direction cannot be reached. We assume symmetric links though, and we assume that
connectivity does not change with time. We say that a node j is a 2-neighbor to node i if either (i) node j is a
neighbor to node i or (ii) node j is a neighbor to node k and node k is a neighbor to node i. The time-of-flight
between nodes i and j is unknown but it is non-negative and there is an upper bound α on the time-of-flights.
If two or more nodes transmit data and there exists a node which receives two or more of these data
transmissions, then we say that this node has suffered from a collision. Our protocol ensures that there is no
such node that suffers from a collision. However, there may be an area which is reached by more than one
transmitter but there is no receiving node in that area, so it is not defined as a collision. It may also happen
that a node receives non-modulated carrier waves that are not part of the data packet from two or more
different nodes. These non-modulated carrier waves are a part of the MAC protocol and the protocol is
designed for this. Since they are not data packets, this is not considered to be a collision either. We assume
that whatever signals a node transmits, all of its neighbor nodes receive exactly one copy of the signal; that
is, there is no multipath distortion and there is no noise.

Nodes. We assume that nodes are equipped with real-time clocks. They are not synchronized; that is, their
values may be different. For every unit of real-time, the clock increases by an amount. This amount is
unknown but it is in the range [1-ε, 1+ ε], 0< ε <1. We let CLK denotes the granularity of the clock. We
assume that the clock does never “wrap-around”.

We will describe the protocol using a timed-automata like notation. States are represented as vertices and
transitions are represented as edges. An edge is described by its guard (a condition which has to be true in
order for the protocol to make the transition) and an update (an action that occurs when the transition is
made). In figures, we let “/” separate the guards and the updates; the guards are before “/” and the update is
after. We let “=” denote test for equality and let “:=” denote assignment to a variable.

We assume that when a time-out transition is enabled, it occurs immediately. The corresponding update of
that transition and continuing path of enabled transitions occur at most L time units later. Intuitively, L
represents the delay due to executing on a finite-speed processor. We let E,F,G,H and R denote time-out
parameters.

Our MAC protocol treats unicast and broadcast in the same way and it has no special support for
acknowledgement. We do not assume any particular modulation technique or coding scheme for the data
bits, but we assume that the transmission of data bits takes at most F-G time units. We assume that nodes can
transmit a carrier wave, and that all nodes are able to detect that carrier wave if they do not transmit
themselves. A node needs TFCS (Time-For-Carrier-Sensing) time units to detect that a carrier wave was
transmitted. A node can sense other transmissions only if the node does not transmit. It needs turnaroundRxTx
time units to switch from transmission to reception or vice-versa. All nodes have the same turnaroundRxTx
time.

4 The protocol

Figure 1 gives an informal overview of the protocol. Between the protocol and applications on the node there
is a queue storing messages that requested to be transmitted. In the starting state (marked as), the protocol
waits until the queue is non-empty. Then the protocol waits for a long idle time and then it transmits a pulse
of the carrier wave. The beginning of the pulse represents a common reference point in time for all nodes. A
node dequeues the highest priority message and then the nodes perform a tournament. If a node wins the
tournament then it transmits the message. If a node loses the tournament then it continues to listen on the
channel to figure out which priority was the winner, and then it receives the message. If the node which lost
had an application that requested this message then it is delivered to that application, if not then the message
is discarded.

The remainder of this section is structured as follows. Section 4.1 discusses informally how to design a
dominance protocol on a wireless channel and Section 4.2 extends it to deal with hidden nodes. In Section
4.3 we will see that the protocol may reduce the amount of parallelism significantly. For this reason, we will
extend the protocol to ensure that the amount of parallelism is high; we will prove this. Due to space
limitations, we have put some material in Appendices. Appendix A puts all these ideas together and presents
formally a protocol which is prioritized and collision-free in the presence of hidden nodes, and which has a
high degree of parallelism. It depends on certain time-out parameters, E,F,G,H and R. In Appendix B we
select values of these time-out parameters.

4.1 Dominance on a wireless channel
Dominance protocols operate such that nodes transmit their priority bit-by-bit starting with their most
significant bit. If a node transmits a recessive bit and hears a dominant bit then the node withdraws. Finally,
all nodes but one has withdrawn; the node which has not withdrawn is called a winner and it transmits the
message. In wired networks, dominance is straightforward to implement because a node can transmit and
receive simultaneously and hence if a node has a recessive bit it can still sense a dominant bit. In wireless
networks, this sensing simultaneous with transmitting requires more thought. We can observe that a node
does not need the full ability of sensing simultaneously with transmission. A node only needs the ability to
sense simultaneously with transmission when a node transmits a recessive bit. This can be achieved by
encoding a recessive bit as no transmission at all, and by encoding a dominant bit as a non-modulated carrier.
This makes it possible to design a dominance protocol on a wireless channel (this approach was used in our
previous work [7] and also in [4-6]). Before the tournament starts, it is necessary that nodes agree on a
common reference point in time. In [7] this was achieved by listening for a long period of silence. Then, if a
pulse is heard the timer is reset; if it is not heard then it waits for a short while and if it still had not heard a
pulse then it transmits a pulse and resets its timer. The solution in [4-6] however, is based on that all nodes
perform periodic beaconing with randomized decision on whether to transmit the beaconing. This gives a
low overhead but unfortunately, it can happen that no node transmits the beaconing signal.

Fig. 1. Overview of the protocol.

4.2 Dealing with hidden nodes
Consider Figure 2. Consider the case that S1 has higher priority than S2 and that both of them request to
broadcast. S1 does not hear S2, and similarly, S2 does not hear S1. There may be many nodes but for now let
us only consider one node R which can hear both S1 and S2. Hence, S1 and S2 compete for R but,
unfortunately, S1 and S2 do not hear each other. Hence, it is necessary that R conveys S1’s priority to S2
and, similarly, it is necessary that R conveys S2’s priority to S1.

The researchers of [4-6] proposed that the hidden nodes can be dealt with by sending the carrier on a separate
channel and the transmitter on this separate channel has more transmission power (or the receivers of this
channel are more sensitive). This works in free-space but it does not work when the nodes are hidden from
each other because an obstructive physical object is located between them.

Let us now design a correct solution. We have to ensure that carrier sensing can reach two hops and that
transmission of data still only reaches one hop. A natural way of doing this is that a sender transmits its
priority bit and then waits for a short duration. During this short duration, a node will transmit a carrier if it
hears a carrier. In this way, a dominant bit will be propagated to the other sender. It is important, however,
that priorities are only propagated two hops. (If priorities were propagated three or more hops then a
dominant node i could win over another node j which is so far way that if node i and node j transmitted
simultaneously then there is no receiver that receives both broadcasts. This would lower the amount of
parallelism and hence performance, so this is undesirable.) If any node which received a dominant bit would
retransmit a dominant bit then a dominant bit would propagate arbitrarily far. On the other hand, if the
priority was propagated less than two hops; that is one hop, then the hidden node problem can occur and
hence cause collisions. Hence, it is important that the priority is propagated exactly two hops from the
sender.

This requires three modifications to the dominance protocol [7]. First, before the tournament starts it is
necessary that nodes synchronize to agree on the time when the tournament should start. When priority bits
are transmitted it is necessary that nodes agree on a common reference point in time. In CAN this is
performed by letting a node wait for a long period of silence and our protocol does the same (as indicated in
Figure 1). If the node hears that the carrier makes a transition from idle to busy then it resets its timer.
Otherwise the node waits for a short while extra and if it still has not heard a carrier then it transmits a carrier
and resets its timer. This synchronization works only in single-hop networks. In our multihop network, the
protocol must retransmit the pulse of carrier. To ensure that a pulse of the carrier wave is propagated exactly
two hops, we let senders transmit a pulse of the carrier wave with one duration and when any node (sender or
receiver) hears it for such a long duration (or knows about it) they retransmit the pulse but with another
(shorter) duration.

The second modification to the protocol is that priorities need to be retransmitted. When a bit in the
tournament is transmitted it will wait for a short while before the next bit is transmitted, any nodes which
hear the previous transmission, retransmit it just afterwards. These two pulses have the same duration; there
is no need for pulses of different duration because nodes have already synchronized.

Third, when a node has won the tournament and transmits the data bits, all nodes one hop away from the
sender will hear about the transmission. However, nodes two hops away will experience silence. If the
transmission of databits would be long then other nodes may experience a long period of silence and start the
tournament. If that would happen then a node may go through the tournament and it may transmit pulses of
carrier waves which may collide with the ongoing transmission. However, recall (from Section 3) that we
assume that each data packet has a maximum transmission time (given by the parameters F-G). This assures
that no node will interfere with the winning node when it transmits its data bits.

S1 R S2

Fig. 2. Prioritization in the presence of hidden nodes.

4.3 Dealing with “multihop competing”
We want a MAC protocol that maximizes the number of nodes that can transmit simultaneously subject to
the constraints that priority scheduling is achieved and that no collisions occur. We will now define these
concepts.

Consider a set of nodes N. There is a subset T of these nodes that request to transmit. A MAC protocol is
defined as follows:

Definition. MAC protocol. A MAC protocol selects at every moment the set S of nodes which are
transmitting a data packet. S is a subset of T. This set S must satisfy the mutual exclusion property.

Definition. Mutual Exclusion Property. The set S satisfies the mutual exclusion property if there is no node
i in N such that i has two or more neighbors which are in S.

This guarantees that every node will hear at most one broadcast. Note that at certain times, the number of
elements in S may be small. It may even happen that S is empty at certain times. This can happen when
nodes do not have any outgoing messages. It can also happen that nodes have outgoing messages but at this
moment the tournament is performed.

Since we are studying prioritization we will now define it. A MAC protocol is prioritized if S satisfies the
prioritization property at every time. We will say that a node i has priority prio(i) when we mean that the
highest priority message at node i which request to transmit has priority prio(i). We assume that if the
number prio(i) is low then the priority is high.

Definition. Prioritization Property. The set S satisfies the prioritization property if both conditions below
are satisfied:

1. For every pair of nodes i and j such that i and j are neighbors and both node i and node j have

outgoing messages (that is i∈T and j∈T) and prio(i) < prio(j) it holds that exactly one of the

following conditions are true: (i) i∈S and j∉S; (ii) (j∈S and i∉S)⇒∃k:((k∈S and node k is a

neighbor of node i and prio(k) < prio(i)).

2. Consider a node i and every neighbor node j which is a neighbor to i. If prio(j)>prio(i) then node

i must be in S.

Case (i) in Condition 1 represents normal prioritization, and case (ii) in Condition 1 represents the case of
pseudo priority inversion. Condition 2 states that if a node requests to transmit and it has higher priority than
all its neighbors, then this node must transmit.

N1 N2

111 Priority of node:

N3 N4

010 001 000

time

1 0 0 0

1 0 0

1 0

Transmit data

Fig. 3. Some prioritization protocols can cause a very low amount of parallelism.

It is easy to design a MAC protocol that satisfies the mutual exclusion property and the prioritization
property; a protocol which only transmits if Condition 2 is true does that. Unfortunately, such a protocol
suffers from a problem called “multihop competing” [4], a situation where |S| is unnecessarily small.

Consider Figure 3. The nodes N1, N2, N3 and N4 request to transmit and we consider the case that there are
no nodes that only receive. The topology and priority is given in Figure 3. In the first round of the
tournament, N1 transmits a recessive bit “1” and the others transmit a dominant bit “0”. In particular N2
transmits a dominant bit and hence N1 loses. In the next bit, N2 loses and in the final, third bit, N3 loses. We
can see that N4 wins the tournament and it will transmit data. This is the behavior of one MAC protocol that
satisfies the prioritization property and mutual exclusion property. Unfortunately, it does not maximize |S|
because it would have been possible for N1 and N4 to transmit. Based on the behavior in Figure 3, we will
now discuss how to design a MAC protocol that maximizes |S|.

In the example in Figure 3, the MAC protocol has to (according to Condition 2 in the definition of
prioritization) select N4 as one of the nodes to transmit. Due to the prioritization property, N3 cannot be
selected as a member in S. Due to the prioritization property either N1 or N2 could be a member in S, but the
mutual exclusion property requires that N2 is not a member in S. Hence N1 and N4 can be members in S, so
it is possible to transmit two messages in parallel. A MAC protocol however does not know the entire
topology and all the priorities of the messages; it only knows about the priorities of its neighbors. N1, N2 and
N3 have similar relationships to their neighbors; they all have a neighbor with higher priority. It is
problematic if a MAC protocol makes the same decision for all nodes because if N1, N2 and N3 transmit
then the mutual exclusion property is violated, and if none of them transmit then |S| = 1, which is
undesirable as well. Hence, N1, N2 and N3 must make different decisions although their environments
appear to be the same. We must find one of the nodes N1, N2 or N3 which is different from the other. A
more careful look reveals however, that N1 and N2 experience different things. N1 loses in the first round
(called round 0) and N2 loses in second round (called round 1). By analyzing the behavior in Figure 3 we can
see that the source of the low degree of parallelism is that a node i can transmit a dominant bit and hence
cause another node j to lose the tournament but then later node i also loses. Hence, node j lost unnecessarily.
If a node loses late in the tournament then it has many opportunities to cause other nodes to lose. It seems to
be a good idea to change the protocol so that first a node knows in which round it will lose and then the
tournament is performed in reverse order so that the nodes that lost late will now lose early. Figure 4
describes such an algorithm.

Let us apply the algorithm in Figure 4 on the example in Figure 3. Lines 1 to 10 in the tournament initialize
variables. Lines 11 to 14 just run the normal tournament. In line 13, we call a subroutine (described to the
right in Figure 4) which takes care of the contention of one single bit. After line 14, node 1 has lostindex
= 0; node 2 has lostindex = 1, node 3 has lostindex = 2 and node 4 has lostindex =INFINITY (it
did not lose). In lines 15 to 19, we observe that a node which did not request to transmit is not a potential
winner of the tournament. A node which lost in the last round in the first part of the tournament (lines 11 to
14) cannot be a potential winner either. However, all other nodes are potential winners. That is node 1, node
2 and node 4 are potential winners (they have winner=TRUE). Node 3 lost in the last bit so it is not a
potential winner (it has winner=FALSE). In lines 20 to 23 we run the tournament in the reverse order.
Observe that we do not consider the bit npriobits-1 in this part of the tournament; we start with the bit
npriobits-2.

1 begin tournament

2 lostindex:=INFINITY

3 if node request to transmit

4 then

5 winner:=TRUE

6 priobits represents the

7 priobits of message

8 else

9 winner:=FALSE

10 endif

11 for index:=0 to npriobits-1 do

12 active:=TRUE

13 bit_contention(index)

14 endfor

15 if lostindex/=npriobits-1 AND node

 requested to transmit then

16 winner:=TRUE

17 else

18 winner:=FALSE

19 endif

20 for index:=npriobits-2 downto 0 do

21 active:=index<=lostIndex

22 bit_contention(index)

23 endfor

24 if winner then

25 action:=TRANSMIT

26 else

27 action:=IDLE

28 endif

29 end tournament

1 procedure bit_contention(index: integer)

2 begin

3 exec:=0

4 wait until all nodes have exec=0

5 if priobits[index]=DOMINANT AND

 winner=TRUE AND active=TRUE then

6 transmit DOMINANT

7 heardDOMbit:=FALSE

8 else

9 if transmission of DOMINANT

 bit is detected then

10 heardDOMbit:=TRUE

11 else heardDOMbit:=FALSE endif

12 endif

13 exec:=1

14 wait until all nodes have exec=1

15 if heardDOMbit then

16 transmit DOMINANT

17 else

18 if transmission of DOMINANT

 bit is detected then

19 heardDOMbit:=TRUE

20 else heardDOMbit:=FALSE endif

21 endif

22 exec:=2

23 wait until all nodes have exec=2

24 if priobits[index]=RECESSIVE AND

25 winner=TRUE AND active=TRUE AND

26 heardDOMbit=TRUE then

27 winner:=FALSE

28 lostIndex:=index

29 endif

30 end procedure

Fig. 4. A tournament that solves the “multihop competition problem”.

Let us now consider the iteration when index=1. Line 22 will be executed by node 2, node 3 and node 4.
However, only node 2 and node 4 have both winner=TRUE and active=TRUE. Hence, they are the only
ones that are allowed to transmit a dominant bit (see Line 5 in the procedure bit_contention). Node 2

transmits “1” and node 4 transmits “0”. Node 3 has active=FALSE so it does not transmit dominant bit
but it propagates the priority bits of node 2 and node 4 (see Lines 13-21 in the procedure
bit_contention). Hence, node 2 loses because it hears a dominant bit. Let us now consider the iteration
when index=0. Line 22 will be executed by all nodes again but only node 1 and node 4 have both
winner=TRUE and active=TRUE. Node 1 will transmit “1” and node 4 will transmit “0”. At line 24, we
have two nodes, node 1 and node 4, with winner=TRUE, so they will transmit. In this example, this is the
maximum degree of parallelism. As we can see by Theorem 1 below, this is not a coincidence.

Theorem 1. If all nodes request to transmit at the same time then there is no other prioritized MAC protocol
that obtains a larger |S| than the algorithm in Figure 4.

Proof: We will prove Theorem 1 using mathematical induction.

Base case. Theorem 1 is true for npriobits=1.

Proof. This is clearly true because with npriobits=1 the second part of the tournament does
not exist.

Induction step. For every x≥2 it holds that:

Theorem 1 is true for npriobits=x-1⇒Theorem 1 is true for npriobits=x.
Proof of the induction step. We can prove this using contradiction. Let us assume that the
induction step was incorrect. Then the left hand side of the implication must be true but there
must exist a graph and a priority assignment such that the expression to the right of the
implication in the induction step is false. We will now reason about this. There must exist a
connectivity graph G and a priority assignment to nodes P (where the priorities assigned have
x bits) such that |S(G,P,A)|<|S(G,P,OPT)|. S is the set of nodes that are selected and it depends
on the graph, priority assignment to nodes and on the algorithm. A is our algorithm. OPT is an
algorithm that maximizes |S|. We let N(G) denote the nodes in G and E(G) denote the edges in
G. Let notS denote the set |N(G)|\S. We can reason about the nodes that necessarily must be in
notS . Let us consider a node i with lostindex=x-1 at line 15. (Recall that npriobits=x.) If
this was the case then there was another 2-neighbor j such that every node k which is a 2-
neighbor with j has prio(j) < prio(k). Based on the definition of the property of prioritization,
node j must be in S and consequently (due to the prioritization property), node i must be in
notS. We have now obtained the conclusion that:

 All nodes with lostindex = x-1 at line 15 must be a member of notS.
We can observe that those nodes with lostindex = x-1 at line 15 must be a member of notS
for every prioritized MAC protocol. We will now create a new graph G´ such that
N(G´)=N(G)\{nodes with lostindex=x-1} and E(G´)=E(G)\{edges from or to a node with
lostindex=x-1}. Hence G´ is a graph where we have subtracted the nodes that necessarily lose.
Based on this, we obtain

|S(G´,P,A)|= |S(G,P,A)| and |S(G´,P,OPT)|= |S(G,P,OPT)|
and consequently:

|S(G´,P,A)|<|S(G´,P,OPT)|
The priority assignment P is the same as before but now P may assign priorities to nodes
which do not exist. This is no problem. We will now create a new priority assignment P´. The
priorities in P´ have only npriobits-1 bits instead of the npriobits which P had. Consider a
node A in G´. Let us assume that P assigned node A the priority Q. We define P´ as follows.
P´ assigns node A the priority Q but without the least significant bit of the priority. This least
significant bit does not change the number of nodes that were selected anyway, so we obtain:

|S(G´,P´,A)|= |S(G´,P,A)| and |S(G´,P´,OPT)|= |S(G´,P,OPT)|
Applying this to the inequality |S(G´,P,A)|<|S(G´,P,OPT)| that we obtained earlier in this
proof, yields:

|S(G´,P´,A)|<|S(G´,P´,OPT)|

But this is a contradiction to the expression to the left of the implication in the claim of the induction
step. Hence, the induction step is true.

Using the base case and the induction step proves the Theorem 1. �

Based on Theorem 1, we can conclude that it is possible to achieve a prioritized MAC protocol that functions
in the presence of hidden nodes and achieves a high degree of parallelism.

5 Conclusions

We have presented a MAC protocol for sporadic messages on a wireless channel in the presence of hidden
nodes. The protocol is collision-free, supports a large number of priority levels and does not require
synchronized clocks. In order to solve the hidden node problem, the protocol used two new ideas:
(i) synchronization across node that are not neighbors and (ii) propagation of priority bits. In order to
maximize the number of parallel transmissions, the protocol used the new idea of a reverse tournament.

References

[1] A. Mok, "Fundamental Design Problems of Distributed Systems for the Hard Real-Time Environment," in
Electrical Engineering and Computer Science. Cambridge, Mass.: Massachusetts Institute of Technology,
1983.

[2] T. Abdelzaher and C. Lu, "Schedulability Analysis and Utilization Bounds for Highly Scalable Real-Time
Services," presented at IEEE Real-Time Technology and Applications Symposium, TaiPei, Taiwan, 2001.

[3] K. Tindell, H. Hansson, and A. Wellings, "Analysing real-time communications: controller area network
(CAN)," presented at 15th Real-Time Systems Symposium (RTSS'94), 1994.

[4] T. You, C.-H. Yeh, and H. S. Hassanein, "CSMA/IC: A New Class of Collision-free MAC Protocols for Ad
Hoc Wireless Networks," presented at 8th IEEE International Symposium on Computers and Communication,
2003.

[5] T. You, C.-H. Yeh, and H. S. Hassanein, "A New Class of Collision - Prevention MAC Protocols for Ad Hoc
Wireless Networks," presented at IEEE International Conference on Communications, 2003.

[6] T. You, C.-H. Yeh, and H. S. Hassanein, "BROADEN: An efficient collision-free MAC protocol for ad hoc
wireless networks," presented at IEEE International Conference on Local Computer Networks, 2003.

[7] B. Andersson and E. Tovar, "Static-Priority Scheduling of Sporadic Messages on a Wireless Channel,"
presented at International Conference on Principles of Distributed Systems (OPODIS´05), Pisa, Italy, 2005.

[8] J. Leung and J. Whitehead, "On the Complexity of Fixed-priority Scheduling of Periodic Real-Time Tasks,"
Performance Evaluation, Elsevier Science, vol. 22, pp. 237-250, 1982.

[9] A. K. Mok and S. Ward, "Distributed Broadcast Channel Access," Computer Networks, vol. 3, pp. 327-335,
1979.

[10] Bosch, "CAN Specification, ver. 2.0, Robert Bosch GmbH, Stuttgart," 1991.

[11] I. Aad and C. Castelluccia, "Differentiation Mechanisms for IEEE 802.11," presented at Infocom, 2001.

[12] M. Barry, A. T. Campbell, and V. Andras, "Distributed Control Algorithms for Service Differentiation in
Wireless Packet Networks," presented at Infocom, 2001.

[13] D.-J. Deng and C. Ruay-Shiung, "A Priority Scheme for IEEE 802.11 DCF Access Method," IEICE
Transactions on Communication, vol. E82-B, pp. 96-102, 1999.

[14] J.-P. Sheu, C.-H. Liu, S.-L. Wu, and Y.-C. Tseng, "A priority MAC protocol to support real-time traffic in ad
hoc networks," Wireless networks, vol. 10, pp. 61-69, 2004.

[15] J. L. Sobrinho and A. S. Krishnakumar, "Real-time traffic over the IEEE 802.11 medium access control layer,"
Bell Labs Technical Journal, vol. 1, pp. 172-187, 1996.

[16] J. L. Sobrinho and A. S. Krishnakumar, "Quality-of-Service in ad hoc carrier sense multiple access networks.,"
IEEE J. Selec. Areas Commun., vol. 17, pp. 1353--1368, 1999.

[17] X. Yang and N. Vaidya, "Priority Scheduling in Wireless Ad Hoc Networks," Wireless networks.

[18] W. C. Thomas, A. B. Moussa, B. Rajeev, and B. S. David "Contention-Free Periodic Message Scheduler
Medium Access Control in Wireless Sensor / Actuator Networks," presented at IEEE Real-Time Systems
Symposium, Cancun, Mexico, 2003.

[19] H. Li, P. Shenoy, and K. Ramamrithan, "Scheduling Communication in Real-Time Sensor Applications,"
presented at IEEE Real-Time and Embedded Technology and Applications Symposium, Toronto, Canada,
2004.

[20] H. Kopetz and G. Grunsteidl, "TTP-a protocol for fault-tolerant real-time systems," IEEE Computer, vol. 27,
pp. 14-24, 1994.

[21] M. Caccamo and L. Y. Zhang, "An Implicit Prioritized Access Protocol for Wireless Sensor Networks,"
presented at 23rd IEEE Real-Time Systems Symposium (RTSS'02), Austin, Texas, 2002.

[22] P. Karn, "MACA - A New Channel Access Method for Packet Radio," presented at ARRL/CRRL Amateur
Radio 9th Computer Networking Conference, 1990.

[23] Z. J. Haas and J. Deng, "Dual busy tone multiple access (DBTMA)--A multiple access control scheme for ad
hoc networks," IEEE Transactions on Communications, vol. 50, pp. 975 - 985, 2002.

[24] A. Acharya, A. Misra, and S. Bansal, "MACA-P : A MAC for Concurrent Transmissions in Multi-Hop
Wireless Networks," presented at IEEE International Conference on Pervasive Computing and
Communication, Los Alamitos, CA, 2003.

[25] F. A. Tobagi and L. Kleinrock, "Packet Switching in Radio Channels: Part II - The Hidden Terminal Problem
in Carrier Sense Multiple-Access and the Busy-Tone Solution," IEEE Transactions on Communication, vol.
23, pp. 1417-1433, 1975.

[26] C.-S. Wu and V. O. K. Li, "Receiver-initiated busy-tone multiple access in packet radio networks," presented
at ACM workshop on Frontiers in computer communications technology, Stowe, Vermont, United States,
1987.

[27] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, "MACAW: a media access protocol for wireless
LAN's," presented at Applications, Technologies, Architectures,and Protocols for Computer Communication,
London, United Kingdom, 1994.

[28] C. L. Fullmer and J. J. Garcia-Luna-Aceves, "Solutions to hidden terminal problems in wireless networks,"
presented at ACM SIGCOMM '97, Cannes, France, 1997.

[29] C. L. Fullmer and J. J. Garcia-Luna-Aceves, "Floor acquisition multiple access for packet-radio networks,"
presented at Proc. ACM SIGCOMM 95, Cambridge, MA, 1995.

[30] Z. J. Haas, J. Deng, and S. Tabrizi, "Collision-free Medium Access Control Scheme for Ad Hoc Networks,"
presented at Proc. of IEEE Military Communications Conference (MILCOM '99), Atlantic City, NJ, USA,
1999.

[31] R. Garcés and J. J. Garcia-Luna-Aceves, "Floor acquisition multiple access with collision resolution,"
presented at International Conference on Mobile Computing and Networking, Rye, New York, United States,
1996.

[32] R. Garcés and J. J. Garcia-Luna-Aceves, "Collision avoidance and resolution multiple access with transmission
queues," Wireless Networks, vol. 5, pp. 95 - 109, 1999.

[33] R. Rajkumar, Synchronization in real-time systems : a priority inheritance approach. Boston: Kluwer
Academic Publishers, 1991.

[34] B. W. Lampson and D. D. Redell, "Experience with processes and monitors in Mesa," Communications of the
ACM, vol. 23, pp. 105 - 117, 1980.

[35] T. F. Abdelzaher, S. Prabh, and R. Kiran, "On Real-Time Capacity Limits of Multihop Wireless Sensor
Networks," presented at IEEE International Real-Time Systems Symposium, Lisbon, Portugal, 2004.

[36] IEEE 802.11, 1999 Edition (ISO/IEC 8802-11: 1999) IEEE Standards for Information Technology --
Telecommunications and Information Exchange between Systems -- Local and Metropolitan Area Network --
Specific Requirements -- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

[37] "Broadband Radio Access Networks(BRAN);HIPERACCESS; PHY protocol specification," ETSI TS 101 999
v1.1.1 (2002-04) ed.

Appendix A: Precise statement of the proposed protocol

Based on the discussions in Section 4.1-4.3, we will now formally present our protocol. Figure 5 shows
details of the protocol. The figure illustrates how the protocol is designed; the actual behavior is slightly
different due to clock imperfection, time-of-flight of the carrier-signal and delays in the transitions. States are
numbered from 0 to 56. State 0 is the initial state. Each node has the following variables: a clock X, an
integer i within the range 0… 2npriobits-1, an integer index within the range 0…npriobits-1, an integer
prio occupying npriobits bits, an integer winner_prio occupying npriobits bits and two boolean
variables active and winner. We let winner_prio[i] denote the bit i in the variable
winner_prio. Analogous for prio[i].

We assume that when the protocol dequeues the highest-priority message then the variable prio is assigned
the priority of that message. There are two functions carrierOn and carrierOff that can be called by a
node. The function carrierOn requests to start the transmission of a carrier wave. It may take up to
turnaroundRxTx until the carrier actually starts to be transmitted but then it continues doing so. If
carrierOff is called then it is requested that the carrier stops being transmitted but it may take up to
turnaroundRxTx until it stops. The symbol “carrier?” means: sense for a carrier and if there is a carrier
then “carrier?” is true. E, F, G, H, SWX and R are constants used for time-outs, whose values we will
choose later.

The states 0-17 in Figure 5 establish a common reference point in time between all nodes that requests to
transmit. The states 14, 15, 16 and 17 establish the same references point for nodes that only request to
receive; this reference point is the same as the reference point of the nodes that request to transmit. The
transition 3→4 is designed to make the protocol robust to clock inaccuracies. The nodes go through the
tournament in states 18-47. In the beginning, all nodes the request to transmit have the potential to win (and
hence their variable winner is TRUE) but after the tournament, only one node is a winner and this node will
enter the state 53 and transmit. The states 18-32 perform the first part of the tournament that is intended to
find out in which turn a node lost. During the tournament, nodes contend bit-by-bit, starting with the most
significant bit. The states 32-47 perform the second part of the tournament. The first part of the tournament
and the second part of the tournament are very similar; they differ mainly in that in the second part (i) the
contention between priority bits starts at the least significant bit and goes to the most significant bit and
(ii) the conditions for when a node is active differ.(the variable active takes care of this.) In the first part
or the tournament, a node is always active; in the second part of the tournament, a node is only active is
index ≤ lostindex. If a node is not active then (i) it cannot transmit a dominant bit and (ii) if it is
recessive and heard a dominant bit then it cannot lose.

first part of the tournament

message sending stage

second part of the tournament

decision stage

message sending stage

synchronization

decision stage

queue is
non-empty/
listen:=FALSE

no carrier?/
x:=0

carrier?/

x>=F/
x:=0

x>=E/
carrierOn

no carrier?/

carrier?/
x:=0

x>=E+SWX/
x:=0

x>=R/

x>=R/

x>=3H-SWX/

x>=3H/

x>=3H+G-SWX/
carrierOn

requests to
receive only/
listen:=TRUE

no carrier?/
carrier?/
x:=0

x>=3H/

x>=R/

x>=3H-SWX-E/

x>=3H+G/

x>=4H+G/
i:=0
index:=0
winner:=NOT listen
lostIndex:=INFINITY
dequeue highest prio msg

24

x>=4H+2G+(2G+2H)*i/
active:=TRUE x>=4H+2G+

(2G+2H)*i+SWX/
prio[index]=0 AND
winner=TRUE AND
active=TRUE/
carrierOn

x>=5H+2G+(2G+2H)*i-SWX/
carrierOff

x>=5H+2G+(2G+2H)*i/
heardDOMbit:=FALSE

x>=5H+3G+(2G+2H)*i AND
heardDOMbit=TRUE/
carrierOn

prio[index]=1 OR
winner=FALSE OR
active=FALSE/

x>=5H+3G+(2G+2H)*i/
heardDOMbit:=FALSE

x>=6H+3G+
(2G+2H)*i/

x>=6H+3G+(2G+2H)*i-SWX/
carrierOff

x>=6H+3G+
(2G+2H)*i/

no carrier?/
x:=4H+G

i<npriobits-1/
i:=i+1
index:=index+1

i=npriobits-1/
winner:=(lostIndex npriobits) AND (listen=FALSE)
index npriobits-2
i:=i+1

no carrier?/
x:=4H+G

x>=4H+2G+
(2G+2H)*2npriobits+SWX/

index=0 AND
x>=4H+2G+(2G+2H)*2npriobits/
carrierOn

x>=5H+2G+
(2G+2H)*2npriobits-SWX/
carrierOffx>=5H+2G+

(2G+2H)*2npriobits/

winner=TRUE/

x>=5H+4G+
(2G+2H)*2npriobits/winner=FALSE/

/start Tx msgstart Rx msg/

stop Tx msg/stop Rx msg/

x>=5H+3G+
(2G+2H)*2npriobits/

x>=5H+3G+(2G+2H)*i AND
heardDOMbit=FALSE/

carrier?/
heardDOMbit:=TRUE

carrier?/
heardDOMbit:=TRUE

prio[index]=1 OR
winner=FALSE OR
active=FALSE/

heardDOMbit=TRUE/
winner_prio[index]:=0

heardDOMbit=FALSE/
winner_prio[index]:=1

winner=FALSE OR
active=FALSE/

winner=TRUE AND
active=TRUE/
winner:=FALSE
lostIndex:=index

prio[index]=0 AND
winner=TRUE AND
active=TRUE/
winner_prio[index]:=0

x>=4H+2G+
(2G+2H)*i/
active:=(index<=lostIndex)

x>=4H+2G+
(2G+2H)*i+SWX/

prio[index]=0 AND
winner=TRUE AND
active=TRUE/
carrierOn

x>=5H+2G+(2G+2H)*i-SWX/
carrierOff

x>=5H+2G+(2G+2H)*i/
heardDOMbit:=FALSE

x>=5H+3G+(2G+2H)*i AND
heardDOMbit=TRUE/
carrierOn

x>=5H+3G+(2G+2H)*i+SWX/
carrierOn

prio[index]=1 OR
winner=FALSE OR
active=FALSE/

x>=5H+3G+(2G+2H)*i/
heardDOMbit:=FALSE

x>=6H+3G+
(2G+2H)*i/

x>=6H+3G+(2G+2H)*i-SWX/
carrierOff

x>=6H+3G+
(2G+2H)*i/

index>0/
i:=i+1
index:=index-1

x>=5H+3G+(2G+2H)*i AND
heardDOMbit=FALSE/

carrier?/
heardDOMbit:=TRUE

carrier?/
heardDOMbit:=TRUE

prio[index]=1 OR
winner=FALSE OR
active=FALSE/

heardDOMbit=TRUE/
winner_prio[index]:=0

heardDOMbit=FALSE/
winner_prio[index]:=1

winner=FALSE OR
active=FALSE/

winner=TRUE AND
active=TRUE/
winner:=FALSE
lostIndex:=index

prio[index]=0 AND
winner=TRUE AND
active=TRUE/
winner_prio[index]:=0

12

3

4

5

7

8

9

10

11

14

15

16

17

12 13x>=4H+G-SWX/
carrierOff 18 19 20 21

22

23

25

x>=5H+3G+(2G+2H)*i+SWX/
carrierOn

27

28

29 26

31 32

30

33 34 35 36

37

38

39

40

42

43

44 41

46 47

45

0

5352

51

50 49 48

5456

5557

6

x>=3H-SWX/
carrierOff

Fig. 5. Details of the protocol.

Fig. 6. An illustration of the carrier wave transmitted assuming npriobits = 2 and the priority of the requested message is 2. This
illustration is simplified; it ignores the many smaller time intervals, like E, SWX and R. For a full understanding of the protocol, see

the automata in Figure 5.

We will now describe the two parts of the tournament. Because both parts of the tournament are similar, we
only describe the first part. If a node loses the contention of a bit then it loses the entire tournament but it
continues to listen to find out which priority wins the tournament. If a node does not lose the contention
during this bit, it continues with the contention for the next bit. The contention of a single bit is taken care of
in state 18-32. First, a dominant bit it transmitted if it should do so and a node that hears a dominant bit,
retransmits it. This happens in the states 18-29, and the only purpose of these states is that a node which had
a recessive priority bit but heard a dominant bit should assign headDOMbit:=TRUE. After that, state 29-32
makes decisions based on the value of heardDOMbit.

In order to understand the time-out parameters E, F, G, H and R consider Figure 6. F denotes the initial idle
time period. H represents the duration of a pulse of the carrier wave. G denotes a “guarding” time interval to
separate pulses of carrier waves. This “guarding” time interval makes the protocol robust against clock
inaccuracies and takes into account that signals need a non-zero time to propagate from one node to another.
R is intended to improve the reliability of the synchronization before the tournament.

Based on Figure 6 we compute the transmission time of a message taking the overhead of the protocol into
account as:

() () LnpriobitsHGGHCC ii 222245´ +×++++= (1)

By taking into account also the initial idle time (in state 2) we obtain:
´´´
ii CSWXEFC +++= (2)

The time-outs have to be selected carefully in order to assure the correctness of the protocol. One such
choice (see Appendix B) is: E =8 µs, F = 1970µs, G = 65µs, H = 108µs, SWX = 20µs and R = 0.

Appendix B

We will now discuss the correctness of the protocol and discuss how assigning values to the constants E, F,
G, H, SWX and R affects the correctness. In order to satisfy mutual exclusion and prioritization we need to
assure that certain events do not occur at the wrong time. We need to assure that:
1. When a node transmits a dominant bit, it is received by all other nodes. Consider an iteration of the

tournament. It must have been sufficient overlap between the time interval where one node transmits the

carrier to inform that it has a dominant bit and the time interval where a node with a recessive bit listens

carrier

time

F

G

H

G

yes

no

A transmission
request occurs beginning of

message
transmission

1st part of the
tournament

2nd part of the
tournament 3H

Fig. 7. An illustration of the carrier wave transmitted assuming npriobits = 2 and the priority of the requested message is 2. This

illustration is simplified; it ignores the many smaller time intervals, like E, SWX and R. For a full understanding of the protocol, see
the automata in Figure 6.

for nodes with a dominant bit. Due to clock drift, this overlap becomes smaller and smaller for each

iteration of the tournament. Hence we consider the last iteration of the second part of the tournament,

and we consider the case when a bit is retransmitted. We require:

() ()[] []
() ()[] []

() SWXTFCSSWXELCLK
npriobitsGHGH

npriobitsGHGH

2222
1122235

1122236

+>+×−−−−
+×−×+++

−−×−×+++

α
ε

ε
 (3)

The motivation of Equation (3) is that the inaccuracy of the synchronization after the initial period of
silence is 2 × (E + SWX). Consequently, two different nodes can have different opinion on when a bit
should be transmitted. If the time windows of the two nodes overlap by TFCS + 2SWX then we can be
sure that the node that attempts to detect the dominant bit will hear at least TFCS time units of the
carrier. The reason for requiring 2SWX extra time units is that it may take SWX for the sender to enter Tx
mode and when it has transmitted the carrier for TFCS time units, when it switches the carrier off, this
may take effect immediately.

2. If one node i has perceived a time of silence long enough (F time units) to make the transition from

state 2 to state 3 but other nodes perceive that the duration of silence to be less than F time units so

far due to different time-of-flight and clock-imperfections, then node i needs to wait until all nodes

have perceived this long time of silence. The protocol should stay in state 3 for E time units to ensure

this. We require:

EFLCLK <×+++ εα 222 (4)

3. A node which has lost the tournament must be in receiving mode in state 53 before it receives the

data bits from the transmission of the winning node (which is in state 51). This is taken care of by

the delay between state 50 to state 51. We know that the node which lost was in receiving mode because

in the last bit in the tournament, it was in receiving mode (if the losing node would have transmitted in

the last bit in the tournament then it must have lost in the last bit and transmitted a dominant bit,

something which is impossible). For this reason, it is only required that the delay between state 12 to

state 13 is large enough to satisfy the following inequality:

() ()[]
() GSWXELCLK
npriobitsGHGH

<+×+++
+×−×+++

222
2122236

α
ε (5)

4. During the tournament, the maximum time interval of idle time should be less than F, the initial

idle period. This assures that if one node makes the transition from state 2 to state 3 (the initial idle time

period) then all nodes will do it at most E + SWX time units later. We require:

() ()[] []
[] []

() FSWXELCLK
GH

npriobitsGHGH

<+×++++
−×+

−+×−×+++

222
14

1122236

α
ε

ε
 (6)

5. The time interval between two successive dominant bits must be long enough to assure that no

node interprets the first dominant bits to be transmitted in the time interval for the second

dominant bit. The worst case occurs when these two bits are the last ones in the second tournament. In

this iteration we consider the first bit and when it is retransmitted. We require:

() ()[] []
() ()[] []

() 0222
1122225

1122235

>+×−−−−
+×−×+++

−−×−×+++

SWXELCLK
npriobitsGHGH

npriobitsGHGH

α
ε

ε

(7)

6. The time to wait from when a carrier is requested to be transmitted until it is known that a carrier

is transmitted must be greater than the time required by the hardware. Naturally, this requires:

RxTxturnaroundSWX > (8)

7. The time that a node listens to a carrier (R) in the synchronization before it decides whether a

pulse was long (3H) or short (H) must be shorter than the short pulse. We must also take into

account the uncertainty in syncronization. This requires:

SWXHR −< (9)

The values of E, F, G, H, SWX and R must be selected to satisfy Inequalities (3)-(9). In order to get an idea
of the magnitude of these values, we will work out an example.

Consider a typical distributed real-time system (a car, a factory or a ship) with a diameter of at most 300m.
This gives
α = 1µs. Typical computers have CLK = 1µs and ε = 10-5 (assuming a low resolution timer and a poor
quality crystal). We assume that the protocol is implemented on dedicated hardware and use L = 2µs. We
choose TFCS = 5µs because busy tone detection of narrow-band signals have been estimated to need this
time [17] and our application of carrier sensing is similar to busy tone detection. We choose turnaroundRxTx =
19µs based on the requirement in IEEE 802.11 standard (see page 180 in [36]). We choose npriobits = 20 to
obtain approximately one million priority levels. One choice that satisfies the constraints for this example is:
E =8 µs, F = 1970µs, G = 65µs, H = 108µs, SWX = 20µs and R = 0. Hence, the overhead per message
(calculated based on (2)) will be 28229µs.

We make two remarks. First, by just looking at the number 28229µs, it may seem quite high. However, our
scheme should be compared with other schemes that are designed to deal with hidden nodes. We should keep
in mind that RTS-CTS schemes have an overhead with the two packets and they have an additional overhead
due to the collisions. These collisions have two effects (i) at least two messages needs to be retransmitted and
this takes time and (ii) the time-out may make the channel idle for a quite long time. Second, the overhead
our protocol is heavily dependent on turnaroundRxTx This is an implementation parameter; there is nothing
fundamental about it. We observe that the HIPERLAN [37] standard required 2µs; something that gives us
an overhead of approximately 4000µs. With further improvements in Tx-Rx turn time in radio technology,
the overhead of our protocol becomes less whereas other protocols are unaffected.

