

Capacity Sharing and Stealing in Server-
based Real-Time Systems

Luís Nogueira
Luís Miguel Pinho

www.hurray.isep.ipp.pt

Technical Report

TR-051205

Version: 1.0

Date: December 2005

Capacity Sharing and Stealing in Server-based Real-Time Systems
Luís NOGUEIRA, Luis PINHO

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {luis, lpinho}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
In this paper we introduce an algorithm that supports the coexistence of guaranteed and best-effort
bandwidth servers in a dynamic scheduling environment. In addition to being able to efficiently reclaim
residual capacities, originated by early completions, an overloaded active server can also steal future
capacities of inactive best-effort servers. The proposed dynamic budget accounting mechanism ensures that
at a particular time, the currently executing server is using a residual capacity, its own capacity or is stealing
some future capacity, eliminating the need of additional server states or unbounded queues. The server to
which the budget accounting is going to be performed is dynamically determined at the time instant when a
capacity is needed. The paper describes and evaluates the proposed scheduling algorithm, stating that it can
efficiently reduce the mean tardiness of periodic jobs. The achieved results become even more significant
when tasks’ computation times have a large variance.

Capacity Sharing and Stealing in Dynamic Server-based Real-Time Systems

Luı́s Nogueira, Lúıs Miguel Pinho
IPP Hurray Research Group

Polythecnic Institute of Porto, Portugal
{luis,lpinho}@dei.isep.ipp.pt

Abstract

A dynamic scheduler that supports the coexistence of guaranteed and non-guaranteed bandwidth servers is proposed.

Overloads are handled by an efficient reclaiming of residual capacities originated by early completions as well as by allowing

reserved capacity stealing of non-guaranteed bandwidth servers. The proposed dynamic budget accounting mechanism

ensures that at a particular time the currently executing server is using a residual capacity, its own capacity or is stealing

some reserved capacity, eliminating the need of additional server states or unbounded queues. The server to which the

budget accounting is going to be performed is dynamically determined at the time instant when a capacity is needed. This

paper describes and evaluates the proposed scheduling algorithm, showing that it can efficiently reduce the mean tardiness

of periodic jobs. The achieved results become even more significant when tasks’ computation times have a large variance.

1 Introduction

It can be easily observed that in many real-time applications the worst-case execution time (WCET) of some tasks is rare

and much longer than the average case. Reserving resources based on a worst-case feasibility analysis will drastically reduce

resource utilisation, causing a severe system’s performance degradation when compared to a soft guarantee based on average

execution times. Furthermore, it is increasingly difficult to compute WCET bounds in modern hardware without introducing

excessive pessimism [7].

Several authors have already proposed algorithms that achieve guaranteed service and inter-task isolation, using mean

execution times (see for example [2, 9, 10, 11, 12, 23]). By isolating the effects of task overloads, hard tasks can be guaranteed

using classical schedulability analysis [16].

Abeni and Buttazo proposed the Constant Bandwidth Server (CBS) [2] to efficiently handle soft real-time requests with a

variable or unknown execution behaviour under the EDF [16] scheduling policy, achieving isolation among tasks, through a

resource reservation mechanism which bounds the effects of tasks overruns. Several CBS-based algorithms were proposed

1

next. For example, the works reported in [15, 5, 17, 14] improve CBS’s ability to reclaim residual capacities to handle jobs’

overloads.

Also in fixed priority scheduling, a resource allocation mechanism based on servers is often advocated to improve the

quality of soft tasks’ behaviour, whilst guaranteeing the deadlines of hard tasks.

However, new highly dynamic systems introduce new requirements and opportunities to an efficient overload control, not

completely handled by the existing scheduling algorithms. It may be important to loose isolation between some servers by

donating reserved capacities to other servers to increase the chance of reducing the mean tardiness of periodic services.

An example of such a system was presented in [18], where previously guaranteed users’ services coexist with the arrival

of new service requests for coalition formation and service proposal formulation for a cooperative execution of resource

intensive applications. It is desirable to be able to process the framework’s management algorithms at a certain minimum

rate. However, overloaded servers that deal with users’ services should be able to use capacities reserved for those algorithms,

giving priority to previously guaranteed services with respect to new service requests that eventually would bring more

workload to the system. A significant reduction in the mean tardiness of periodic users’ services can be achieved by stealing

reserved capacities for the framework’s management.

We consider the coexistence ofnon-isolatedandisolatedservers in the same system. For an isolated server an amountQ

of a resource is ensured to be available every periodT . An inactive non-isolated server, however, can have some or all of its

reserved capacity stolen by active overloaded servers.

Non-isolated servers are motivated by the use of imprecise computation models, such as the anytime algorithms for

the framework’s management [19]. Anytime algorithms provide a useful scheme for integrating complex and unbounded

computations into real-time systems.

This paper introduces and evaluates the Capacity Sharing and Stealing (CSS) algorithm that in the presence of isolated and

non-isolated bandwidth servers can: (i) achieve isolation among tasks; (ii) perform efficient reclaiming of unused computation

time, exploiting early completions; (iii) reduce the number of deadline postponements, assigning all excess capacity to the

currently executing server; (iv) steal capacity from inactive non-isolated servers in overload situations, reducing the mean

tardiness of isolated servers.

The proposed dynamic budget accounting mechanism considers residual capacities, generated by early completions, as

well as inactive non-isolated capacities, as a common resource that can be shared by active servers. The server to which the

budget accounting is going to be performed is dynamically determined at the time instant when a capacity is needed.

2 Related work

An efficient reclaiming of unused bandwidth has been previously addressed by several authors. Some of the most relevant

works in fixed and dynamic priority scheduling are discussed in the next paragraphs.

2

Optimal fixed priority capacity stealing algorithms have been reported in [13, 8] to minimise soft tasks response times

whilst guaranteeing that the deadlines of hard tasks are met. However, they present some drawbacks. The algorithm presented

in [13] relies on a pre-computed table that define the residual capacity present on each invocation of a hard task. In contrast,

[8] calculates the available residual capacity at run time, but the execution time overhead introduced by the optimal dynamic

approach is infeasible in practice.

In [4] Bernat and Burns propose a capacity sharing algorithm for enhancing soft aperiodic responsiveness in fixed priority

scheduling. Each server can consume capacity of other servers to advance the execution of the served task in overload

situations. As such, a server can receive less bandwidth than expected, loosing isolation among served tasks.

The HisReWri fixed priority scheduler [3] identifies those tasks that did execute when a hard task frees some of its max-

imum allocation budget and retrospectively assigns their execution times to the hard task. If there was residual capacity

available, tasks’ budgets are replenished by the amount of residual capacities they consumed. As execution time is retrospec-

tively reallocated the authors describe the protocol as history rewriting.

In dynamic scheduling, CBS’s ability to manage residual capacities originated by early completions has been extended in

several algorithms.

GRUB [15] uses excess capacity to reduce the number of tasks’ preemptions, assigning all the excess bandwidth to the

currently executing job and postponing the deadline before starting a new job, regardless of the current value of the server’s

budget. Although a greedy reclamation policy is used, excess capacity always tends to be distributed in a fair manner among

needed servers across the time line.

A critical parameter of this approach is the time granularity used in the algorithm, since a small period reduces the

scheduling error, but increases the overhead due to context switches [5]. While GRUB starts executing early arrivals with

server’s current budget, but postponing its deadline, we want to reduce the number of deadline shifts, executing periodic tasks

with a more stable frequency. We state that those early arrived jobs should only begin their execution in the expected period

of arrival.

CASH [5] uses a global queue of residual capacities, originated by early completions, ordered by deadline. Each server

consumes available residual capacities before using its own budget. The main benefit of this approach is to reduce the number

of deadline shifts, executing periodic tasks with more stable frequencies.

While CASH presents an efficient reclaiming of unused computation times and achieves temporal isolation on tasks’

execution, it may not schedule tasks as expected, since it immediately recharges servers’ budget without suspending the

tasks as in CBS [17]. Also, because the number of elements in the queue of unused resources can grow beyond any bound,

the CASH algorithm poses challenges to its formal specification and analysis [24]. An improvement to CASH’s residual

bandwidth reclaiming and the its ability to work in the presence of shared resources has been recently reported in [6]. We

explicitly set a recharging time for each server and eliminate the need of a queue of residual capacities by using a dynamic

3

budget accounting mechanism.

IRIS [17] presents a work-conserving mechanism that guarantees a minimum budget in a fixed interval of time. The

authors identify problems in CBS when scheduling acyclic tasks (tasks that are continuously active for large intervals of

time) and propose to suspend each task’s replenishment until a specific time, implementing a hard reservation technique [22].

IRIS fairly distributes residual capacities among needed servers only after they have consumed their own budgets and still

have work to do. Our work focuses on minimising the number of deadline shifts and the mean tardiness of periodic jobs

by consuming residual capacities as early, and not necessarily as fairly, as possible. We carefully considered the fairness

issue. The increased computational complexity of fairly assign residual capacities to all active servers and the fact that fairly

distributing residual capacities to a large number of servers can originate a situation where no enough excess capacity is

provided to any one to avoid a deadline miss, lead us to assign all residual bandwidth to the currently executing overloaded

server.

BACKSLASH [14] proposes to retroactively allocate residual capacities to tasks that have previously borrowed their

current resource reservations to complete previous overloaded jobs, using an EDF version of the mechanism implemented

in HisReWri. At every capacity exhaustion, servers’ budget is immediately recharged and their deadlines extended as in

CBS. However, a task that borrows from a future job remains eligible to residual capacity reclaiming with the priority of its

previous deadline.

Allowing a task to use resources allocated to the next job of the same task, while not jeopardises the schedulability of other

tasks, may cause future jobs to miss their deadlines by larger amounts. This is specially true in tasks whose actual execution

requirements, even if only temporarily, do not vary around an average-case estimate. BACKSLASH can be outperformed

by an algorithm that do not borrows from future resources, when considering the mean tardiness of a set of periodic tasks

on higher system loads [14]. Rather than borrowing from future resource reservations of the same task to handle task’s

overload, we propose to steal reserved capacities of inactive non-isolated servers and suspend each task’s replenishment until

its deadline, not lowering task’s priority either for execution scheduling and residual capacity reclaiming.

Our work integrates and extends some of the best principles of previous approaches to efficiently handle soft-tasks’ over-

loads by making additional capacity available from two sources: (i) residual capacity allocated but unused when jobs com-

plete in less than their budgeted execution time; (ii) stealing capacity from inactive non-isolated servers used to schedule

best-effort jobs. None of the discussed algorithms tries to minimise the mean tardiness of periodic jobs as our do.

3 System model and notation

We consider the existence of a setτ = τh ∪ τs ∪ τn of hard, soft and non-real time tasks in the system.

Each taskτi consists of a sequence of jobs{Ji,j , . . . , Ji,n}, such that∀i,jai,j < ai,j+1, whereai,j is the arrival time of

job Ji,j . Each job has an execution requirement ofei,j time units.

4

Each hard task is characterised by a tupleτi = (Ci, Di, Ti), whereCi is the worst-case execution time,Di is the deadline

of the task, andTi is the minimum inter-arrival time between successive jobs, so thatai,j+1 ≥ ai,j + Ti. In our model, the

absolute deadline of each hard jobJi,j is implicitly set todi,k = ai,k + Ti.

Soft tasks are characterised by average values. The arrival timeai,k of a particular jobJi,k is only revealed during

execution, and the exact execution requirementsei,j can only be determined by actually executing jobJi,j to completion.

The soft absolute deadline is set todi,k = ai,k + Ti. Soft deadline misses can decrease provided QoS, but do not cause

critical system faults.

Since soft tasks cannot be guaranteed to complete execution before their deadlines, our goal is to minimise the mean

tardiness, without jeopardising the guarantees of isolated servers. The tardinessEi,j of a job Ji,j is defined asEi,k =

max{0, fi,j − di,j}, where is the finishing time of jobJi,j .

A non-real time task is a task without time constraints. Non-real time tasks are scheduled when possible, preserving the

guarantees of real-time tasks.

Each hard or soft taskτi is associated to a serverSi that is characterised by a pair(Qi, Ti), whereQi is the maximum

capacity andTi is the server period. Each serverSi maintains a current capacityci, a server deadlinedi and a recharging

time ri. The fraction of the CPU reserved to serverSi (the utilisation factor) is given byUi = Qi

Ti
.

Our scheduling scheme is based on the EDF algorithm. Each server receives a job for computation at timeai,j and serves

it assigning a dynamic absolute deadlinedi,k = ai,k + Ti.

We consider the coexistence of non-isolated serversSN and isolated serversSI in the system. Active (isolated or non-

isolated) overloaded servers can steal inactive non-isolated capacities until their respective deadlines.

At time t each server in the system can be in one of the following states:

Active the served task is ready to execute, or is executing using a residual capacity, its own capacity or stealing capacity

from a inactive non-isolated server, or the server is supplying its residual capacity to the currently executing server.

Inactive the server has no pending jobs and is not supplying any residual capacity to the currently executing server.

All servers begin in the Inactive state. State transitions are determined by the arrival of a new job or by the nonexistence

of pending jobs at replenishment timeri, as follows:

• Inactive → Active: a served job instance arrives at timeai,k

• Active → Inactive: at replenishment timeri there is no pending job to execute

Note that the transition to the Inactive state only occurs at replenishment time. On an early completion, a serverSi remains

active, supplying its residual capacity until its deadline. This eliminates the need of a global queue of residual capacities,

5

as used in [5], or an additional server state, as used in [17, 15]. We state that if a server is supplying residual capacity, it is

contributing to a better global system’s performance and, as such, can be considered as being active.

At each instant in time the proposed algorithm selects for execution, from the set of servers in Active stateA, the server

Si with earliest deadlinedi and with pending work to execute. ServerSi is such that∃Sx ∈ A : min(dx), A 6= ∅.
If there is not any server in Active state, then the processor is idle, or executing non-real time tasks.

4 Capacity sharing and stealing

Our approach is based upon the notion of reserving a fraction of the processor bandwidth for each server to achieve

isolation among users’ tasks. We also want to reclaim, as much as possible, the unused computation time originated by early

completions, and give it to the currently executing server.

Since the execution time of each job is not known beforehand, it makes sense to devote as much excess capacity as possible

to the currently executing server, giving it a chance to complete without deadline postponements, rather than distribute this

capacity (usually in proportion of servers’ bandwidths) among a large number of servers, without providing enough excess

capacity to any of the servers to avoid deadline postponements.

Each server starts by using available residual capacities, according to an EDF policy, before using its own capacity, aiming

at reducing the number of deadline shifts. When a job completes, any remaining capacity is immediately available to the next

server to be scheduled. CSS preemptively allocates residual capacities as soon as they are available to the earliest deadline

server with the priority of the donating server, maximising its likelihood of using those residual capacities to meet its deadline,

as opposed to the approach of only start consuming residual capacities on a budget exhaustion.

When available residual capacities and a server’s own capacity were not enough to handle the execution requirements of

the current job, we propose to steal future reserved capacities of other servers. To do so, we must be very careful to not end

up using any of the future capacity of currently inactive isolated servers. Remember that we do not know when those servers

will become active, since we have no idea of the arrival times of new jobs, and we must guarantee the reserved capacity to an

isolated server. As such, overloaded servers can only steal inactive non-isolated capacities.

In order to allow an overloaded active server to steal inactive non-isolated capacities and continue its execution after its own

capacity exhaustion, its current capacity and deadline cannot be automatically updated as in CBS, CASH and BACKSLASH,

for example. As such, we suspend the capacity recharging and deadline update until a specific time.

When a server consumes some capacity amount, either residual, its own, or a stolen capacity, budget accounting must be

performed. The proposed dynamic budget accounting mechanism ensures that at timet, the currently executing serverSi

is using a residual capacitycr, originated by an early completion of another active server, its own capacityci or is stealing

capacitycs from an inactive non-isolated server.

These principles are detailed in the next sections.

6

4.1 Dynamic budget accounting

CSS requires three additional parameters to characterise each server when compared to the original CBS algorithm. Each

server has a type (isolated or non-isolated), a pointer to a server from which the budget accounting is going to be performed

and a specific recharging time. However, the proposed dynamic budget accounting mechanism eliminates the need of addi-

tional server states and extra queues to manage residual and stolen capacities, reducing the needed overhead when compared

to other algorithms that improve CBS.

Intuitively, each servers’ deadline is a measure of its priority under EDF scheduling. The proposed dynamic budget

accounting protocol follows these rules: (i) whenever a server is selected to be the running server, if there are high priority

servers with residual capacities greater than zero, the server consumes available residual capacities until their exhaustion or

job completion (whatever comes first); (ii) if all residual capacities are exhausted, and there are still pending work to do, the

server points to itself and consumes its own capacity; (iii) if all consumed (residual and own) capacities were not enough to

complete the job, the server steals high priority available capacities of inactive non-isolated servers, until its deadline or job

completion (whatever comes first); (iv) if the currently executing server is connected to another server and it is preempted,

the former is immediately disconnected from the later and points to itself; (v) on job’s completion the server points to itself.

The used capacity is decremented from the reserved capacity of the pointed server. Note that at a particular timet there is

only one server pointing to another server.

4.2 Residual capacity reclaiming

Constant bandwidth schedulers reserve a given bandwidth to each server, achieving isolation among tasks, even in the

presence of jobs’ overloads. However, we also want to reclaim, as much as possible, the unused computation time left

by other servers, maximising the probability of an overloaded server complete its overrun without introducing long delays,

executing periodic tasks with more stable frequencies.

When a serverSi completes a job, and its remaining capacityci is greater than zero, it can immediately be used by others,

until the currently assignedSi’s deadline,di,k. If there are no pending jobs waiting to execute,Si’s residual capacitycr

is updated to the current value of remaining server’s capacityci andci is set to zero. The server is kept in Active state,

maintaining its deadlinedi,k and supplying its residual capacity to other servers.

Whenever a new server is scheduled for execution it first tries to use residual capacities, released by early completions of

other active servers, with deadlines less than or equal to the one assigned to the served job.

Let A be the set of all active servers. The set of active serversAr eligible for residual capacity reclaiming is given by

Ar = {Sr|Sr ∈ A, dr ≤ di,k, cr > 0}, wheredr is the current deadline of early completed jobs.

The consumed residual capacitycr is selected from the earliest deadline active serverSr from the set of eligible servers

7

Ar. Sr is defined as∃1Sr ∈ Ar : mindr
(Ar), Ar 6= ∅.

ServerSi updates its pointer toSr and consumes its residual capacitycr, left by an early completion ofSr. Si executes

with the deadlinedr of the pointed serverSr.

Whenever the residual capacity is exhausted, and there is pending work to do,Si disconnects fromSr and selects the next

available serverS′r (if any).

All available residual capacities, untilSi’s deadline, are then greedily assigned to the currently executing server, minimis-

ing deadline postponements and number of preemptions [15]. If these residual capacities are exhausted and the job is not

complete, the server starts using its own capacityci (pointing to itself), either until job’s completion orci’s exhaustion. On a

ci’s exhaustion,Si is also kept in Active state, maintaining its deadlinedi,k.

The proposed mechanism for residual capacity reclaiming as three main advantages: (i) start consuming residual capacities

before server’s own budget maximises the probability of those capacities being effectively used by other servers to control

overloads before they expire at their deadlines; (ii) using residual capacities with the priority of the donating server preserves

system’s schedulability; (iii) not immediately postponing the server’s deadline on a budget exhaustion improves its probability

of actually using any spare capacity that eventually will be released until its deadline to control the current overload, specially

when it is not possible to steal inactive non-isolated capacities.

4.3 Non-isolated capacity stealing

CSS considers the coexistence of isolated and non-isolated servers in dynamic scheduling. When a own capacity exhaus-

tion occurs and there is still pending work to do, an overloaded server is able to steal capacity from inactive non-isolated

servers.

Let I be the set of all inactive servers. The set of inactive non-isolated serversIN
s eligible for capacity stealing is given by

IN
s = {Ss|Ss ∈ I, max{t, ds} + Ts < di,k, cs > 0}, whereds is the current deadline of each inactive non-isolated server

andTs its period.

Budget accounting will be performed to the earliest deadline inactive non-isolated serverSs from the set of eligible servers

IN
s , and is found by∃1Ss ∈ IN

s : minds(I
N
s), IN

s 6= ∅.
The server connects to the earliest deadline inactive non-isolated serverSs, but continues to run with its own deadlinedi,k,

since we are stealingSs’s capacity and not its priority. If a job arrives forSs, capacity stealing is interrupted andSs reaches

the Active state with the remaining budget. Whencs = 0, and there is pending work to do, the next capacityc′s is used (if

any).

When a server is connected to an inactive non-isolated server and it is preempted, the server is immediately disconnected,

maintaining the Active state. Also, whenever a replenishment event occurs on the capacity being stolen, the server is imme-

diately disconnected and stops using that capacity.

8

The maximum capacity that can be stolen from a inactive non-isolated serverSs is the minimum value between the

non-isolated server’s remaining capacity and the time left to currently executing server’s deadline, and is defined bycs =

min(cs, di − t).

Before stealing any future capacity of an inactive non-isolated serverSs it is necessary to check whether or not an update

of Ss’s deadline and capacity replenishment are needed since a deadline greater than the actual time implies that some other

active overloaded server as already updatedSs’s parameters and stolen some portion of theSs’s reserved capacity. If the

previously generated absolute deadlineds of the selected non-isolated serverSs is lower than the actual time (ds < t), a new

deadline (ds = t + Ts) is generated and server’s capacity is recharged to the maximum value (cs = Qs). Otherwise, the

currently executing server steals capacitycs using current values. In either case,Ss is kept in the Inactive state.

4.4 Specific replenishment time

CSS presents a major difference with respect to CBS, CASH and BACKSLASH on a server’s budget exhaustion. Rather

than immediately recharge server’s budget and postpone its deadline, CSS explicitly sets a recharging timeri for each server

Si, implementing a hard reservation technique [22].

Setting the replenishment and deadline update time to server’s deadline serves the purposes of the capacity reclaiming and

non-isolated capacity stealing approaches presented above. In CSS, on a budget exhaustion the currently executing server

keeps its currently assigned deadline, stealing available capacities from inactive non-isolated servers, if any, or using any

spare capacity that eventually will be released until then. Active servers’ capacity and deadline update time is then set to

ri = di.

If a serverSi is in Active state andt = ri, the taken action depends on the existence, at timet, of pending jobs to

be executed, that is, if there is a jobJi,k such thatai,k ≤ t < fi,k. A server with no pending jobs reaches the Inactive

state and no replenishment is necessary. However, for a server with pending jobs, a new deadline is generated todi,k =

max{ai,k, di,k−1} + Ti, the server’s capacity is replenished to its maximum value(ci = Qi), the recharging time is set to

the server’s new deadline(ri = di,k) and the server’s residual capacity is set to zero(cr = 0). A server with pending jobs

continues in the Active state.

Note that a residual capacity of an active server is only valid until the server’s deadline. If it was not consumed by another

server it must be discharged.

Marzarioet al. [17] state that adding only a fixed recharging time forces the system to be idle even when there are pending

jobs and propose to advance the recharging times of all servers waiting for budget replenishment, reclaiming spare time and

fairly distributing it among needing servers. We have different a goal: minimise deadline shifts, greedily consuming spare

capacities before using each servers’ capacity.

Furthermore, advancing recharging times is against our purpose of executing periodic activities with stable frequencies,

9

and can even be inadequate on a cooperative distributed service execution framework, requiring more effort in service co-

ordination since contracted periods are not being respected. If pending jobs are a consequence of early arrivals, after their

respective servers have released residual capacities originated by early completions of previous jobs, executing periodic ser-

vices with a stable frequency suggests that those early arrived jobs should only begin their execution in the expected period

of arrival.

We also consider the existence of non real-time tasks in cooperative environments. Guaranteed cooperative real-time

services should only use capacities that were determined by previous admission control, either using residual capacities, their

own capacities or stealing inactive non-isolated capacities of other servers. In the presence of early arrivals, real-time tasks

should not use more resources’ percentage than expected.

5 The CSS algorithm

In this section we formally describe the CSS scheduling algorithm. Each taskτi is served by a dedicated (isolated or

non-isolated) server, characterised by a maximum capacityQi and a periodTi. Budget accounting is dynamically performed

on the pointed server. Initially all servers are in the Inactive state.

5.1 Definition

1. When a jobJi,k arrives at timeai,k for serverSi

(a) if Si is Inactive, Si becomesActiveand it is inserted in the ready queue

• if ai,k < di,k, the job is served with the last generated server deadlinedi,k, using the current capacityci

• otherwise,Si’s capacity is recharged to its maximum valueci = Qi, a new deadline is generated todi,k =

max{ai,k, di,k−1}+ Ti, recharging time is set tori = di,k and residual capacity is set tocr = 0

(b) if Si is Activethe job is buffered and will be served later

2. When a serverSj in Active stateis selected as the running server

(a) Sj connects to the earliest deadline active server with residual capacitycr > 0, such thatdr ≤ dj,k (if any) and

runs with deadlinedr

(b) whencr = 0, Sj selects the next earliest deadline capacityc′r (if any) with deadlined′r ≤ dj,k and updates its

deadline tod′r

(c) when all available residual capacitiescr are exhausted and there is pending work,Sj uses its own capacitycj ,

pointing to itself, and runs with its own deadlinedj,k

10

(d) whencj = 0 and there is still pending work to do, the server connects to the inactive non-isolated serverSN
k with

the earliest deadline from which it will steal its capacity (if any), such thatt < dSN
k
≤ dj,k. The server continues

to run with its deadlinedj,k (not with the deadline of the non-isolated serverSN
k).

(e) whencs = 0 the next capacityc′s with deadlinet < dS′Nk
≤ dj,k is used (if any), until job’s completion ordj,k

(f) if Sj is using capacitycs of a non-isolated serverSN
k and it is preempted, thenSj stops usingcs. Sj points to

itself and is kept in the Active state

3. Whenever jobJi,k executes, the used capacitycr, ci or cs is decreased by the same amount

4. When a jobJi,k, served bySi, finishes

(a) the next pending instanceJi,k+1 (if any) is executed using the current capacity and deadline

(b) if there are no pending jobs, the residual capacity is updated with remaining capacitycr = ci, ci is set to zero,

andSi keeps in Active state, keeping its recharging timeri and deadlinedi,k

5. If the server is in Active state andt = ri

(a) if there is pending work to do, the capacity is recharged to its maximum valueci = Qi, the deadline is set to

di,k+1 = max{ai,k+1, di,k}+ Ti, the recharging time is set tori = di,k+1, and the residual capacitycr is set to

zero

(b) otherwise, the server becomes Inactive

6. Whenever the processor becomes idle for an interval of time∆, the residual capacitycr with the earliest deadline is

decreased by the same amount, until all residual capacities are exhausted

5.2 Example of an efficient overload control

Consider the set of periodic tasks detailed in Table 1. Taskτ1 is served by a non-isolated server, while tasksτ2 andτ3 are

served by isolated servers, having deadlines equal to their periods and a reserved capacity equal to their average execution

times. A task that completes before its average execution time frees residual capacity that is used by other tasks, and a task

that needs more than the reserved capacity experiences overload.

Task Qi Ti Server Type
τ1 2 5 S1 non-isolated
τ2 4 10 S2 isolated
τ3 3 15 S3 isolated

Table 1. Task set

11

A possible execution of the task set is presented in Figure 1. When a server is using capacity from another server, either a

residual or stolen capacity, a pointer indicates where the budget accounting is being performed.

Figure 1. Overloads in the CSS algorithm

At time t = 3 taskτ2 has an early completion, and a residual capacitycr = 1, with deadlinedr = 10, is available. Server

S3 is scheduled for execution and connects to serverS2, since there is a high priority residual capacity available. Taskτ3

consumescr = 1 before starting to using its own capacity, at timet = 4. At time t = 7, an overload is handled by stealing

capacity of the inactive non-isolated serverS1. A new deadline for the stolen capacitycs is set to timet = 12.

Note that at timet = 9 a new job for taskτ2 arrives but its execution only starts at timet = 10, since, as detailed before,

advancing execution times is against our purpose of executing periodic activities with stable frequencies.

At time t = 15, during an overload being handled by stealing the non-isolated server’s capacity, a new job for serverS1

arrives.S2 stops usingS1’s capacity, and the non-isolated serverS1 reaches the active state, keeping the current values for

its capacity and deadline. An active non-isolated server behaves as an active isolated server. Since there is not any residual

capacity available,S1 starts consuming its remaining capacity.

At time t = 16, serverS1 has no remaining capacity and stops executing. At timet = 19, a replenishment of server’s

capacity occurs andS1 continues to execute the pending job. Since at timet = 20, S1 completes its job’s execution, it frees a

residual capacitycr = 1, with deadlinedr = 24, that is used by serverS2, before consuming its own capacity at timet = 21.

At time t = 25 a job for taskτ1 arrives, and the non-isolated serverS1 becomes active. It first consumes the residual

capacitycr = 1, with deadlinedr = 30, generated at timet = 24 by an early completion of taskτ2, before consuming its

own capacity1.

At time t = 33 an overload of taskτ2 is first efficiently handled by stealing capacity of the inactive non-isolated server

S1, and then, at timet = 38, consuming the available residual capacity generated by an early completion of taskτ3. This is

possible, since a server remains in the Active state, until its deadline, even if it has exhausted its capacity.

1In the cooperative service execution environment of [20], the algorithm served byS1 would have more time to run, due to early completions of other
servers, and, as such, potentially produce better results in the coalition formation or service proposal formulation process.

12

This example shows that overloads can be efficiently handled without postponing deadlines, either by using residual

capacities and by stealing capacities of inactive non-isolated servers.

6 Theoretical validation

Here we analyse the schedulability of a hybrid set of hard and soft periodic tasks. Each task is scheduled using a dedicated

isolated or non-isolated server with parameters(Qi, Ti), whereQi is server’s maximum capacity andTi its period.

Each task can use residual capacities, its own capacity or steal inactive non-isolated capacities as well as offer its residual

capacity to other tasks.

In [1] it is proved that a server with parameters (Qi,Ti) cannot occupy a bandwidth greater thanQi

Ti
. That is, ifDSi

(t1, t2)

is server’sSi bandwidth demand in the interval[t1, t2], it is shown that∀t1, t2 ∈ N : t2 > t1, DSi
(t1, t2) ≤ Qi

Ti
(t2 − t1).

This isolation property allow us to use a bandwidth reservation strategy to allocate a fraction of a resource to a task whose

demand is not known a priori. The most important consequence of this property is that soft tasks, characterised by mean

values, can be scheduled together with hard tasks, even in the presence of overloads.

We state that our dynamic budget accounting mechanism does not affect schedulability. By assigning each soft task a

maximum bandwidth, calculated using the mean execution time and the desired activation period, and isolating the effects of

task overloads, a hybrid task set can be guaranteed using the classical Liu and Layland condition [16].

Before proving the schedulability of the proposed algorithm it is important to prove that all generated capacities are

exhausted before their respective deadlines.

Lemma 1 Given a set of isolated capacity based servers, each isolated capacity generated during scheduling is consumed

before its deadline or it is discharged at server’s deadline

Proof

Let ai,k denote the instant at which a new jobJi,k arrives and serverSI
i is in Inactive state. Atai,k, a new capacityci = Qi

is generated.

Let ∀i,k di,k = max{ai,k, di,k−1}+ Ti be the deadline associated with capacityci.

Let ∀i,k ri = di,k be the replenishment time associated with capacityci.

Let [t, t + ∆t) denote a time interval during which serverSI
i is executing, consuming its own capacityci. Consequently,

SI
i has used an amount equal toc′i = ci−∆t ≥ 0 of its own capacity during this period. As such,ci must be decreased toc′i,

until its value is equal to zero.

Let fi,k denote the instant that serverSI
i completes jobJi,k.

Assume that there are no pending jobs. The available capacityci > 0 can be used by other servers.

13

Let cr = ci be the residual capacity available to other servers. At instantfi,k, server’s capacityci is set to zero and another

active serverSj is scheduled for execution.

If the inequalitydi,k ≤ dj,l holds, serverSj can use residual capacitycr until deadlinedi,k or cr = 0.

Let [t, t + ∆t) denote a time interval during which serverSj is executing, consuming residual capacitycr. Consequently,

Sj has used an amount equal toc′r = cr −∆t ≥ 0 of residual capacity of an active serverSi during this period. As such,cr

must be decreased toc′r, until its value is equal to zero.

At replenishment timet = ri any remaining residual capacitycr of serverSi, not used by another active server, is set to

zero.

¤

Lemma 2 Given a set of isolated and non-isolated capacity based servers, each non-isolated capacity generated during

scheduling is consumed before its deadline or it is discharged at server’s deadline

Proof

We analyse the following cases: a) a non-isolated capacity is generated when an overloaded active server needs to steal

the inactive non-isolated server’s capacity; and b) a non-isolated capacity is generated when a new jobs arrives for a inactive

non-isolated server.

Case a.

Let ai,k denote the instant when an active overloaded server starts using the non-isolated capacityci of the inactive non-

isolated serverSN
i .

If the inequalitydi,k−1 ≤ ai,k holds, a new deadlinedi,k = ai,k + Ti is generated, the server’s capacityci is recharged

to the maximum valueci = Qi and the replenishment timeri is set tori = di,k. Otherwise, the server maintains the current

values ofci, di,k, andri.

Let [t, t + ∆t) denote a time interval during which serverSj is executing, stealing non-isolated capacityci of serverSN
i .

Consequently,Sj has used an amount equal toc′i = ci −∆t ≥ 0 of non-isolated capacity of serverSN
i during this period.

As such,ci must be decreased toc′i, until its value is equal to zero.

If a new job arrives atai,k < a′i,k < ri, the inactive serverSN
i reaches the Active state, using the current values ofci,

di,k, andri. If at instanta′i,k, capacityci is being stolen by serverSj , thenSj stops consumingci at instanta′i,k.

At time t = ri any remaining capacityci of inactive non-isolated servers, not stolen by another active server, is set to zero.

14

Case b.

Let ai,k denote the instant when a new jobJi,k arrives for the inactive non-isolated serverSN
i .

If the inequalitydi,k−1 ≤ ai,k holds, a new deadlinedi,k = ai,k + Ti is generated, the server’s capacityci is recharged

to the maximum valueci = Qi and the replenishment timeri is set tori = di,k. Otherwise, the server maintains the current

values ofci, di,k, andri.

At time ai,k the non-isolated serverSN
i reaches the Active state and behaves like an isolated active server. As such, its

capacityci is consumed as follows from lemma 1.

¤

Theorem 1 The schedulability of all hard tasks is unaffected under a dynamic budget accounting mechanism that always

selects a server with higher or equal priority if and only if

∑
Uhard + Usoft ≤ 1

Proof

Let τh be a set of periodic hard tasks, where each task is scheduled by a dedicated isolated server withQi equal to the

WCET of τi andTi equal to the minimum inter arrival time of each job, with total utilisationUhard.

Let τs be a set of soft tasks, where each task is scheduled by a group of isolated and non-isolated servers with mean values

for Qi andTi, with total utilisationUsoft.

Lemma 1 states that each isolated capacity is always consumed before its deadline or discharged at server’s deadline,

hence it follows that each hard task instance has to finish by its deadline. From Lemma 2 we know that each non-isolated

capacity is also consumed before its deadline or is discharged at server’s deadline.

Since the worst case response time of a hard task is independent of whether a server is executing work for itself or whether

its capacity is used by another server, system’s schedulability is independent of whether the dynamic budget accounting

mechanism is in operation or not. In the worst case, the longest time a server can be connected to another server is bounded

by the currently pointed server’s capacity and deadline.

¤

7 Evaluation

Two sets of experiments have been performed to verify the effectiveness of the CSS algorithm in reducing the mean

tardiness of periodic jobs. In the first set, a comparison is made against BACKSLASH and CASH, scheduling only isolated

15

servers, serving a set of periodic tasks. The second set evaluates the higher flexibility in overload management introduced by

CSS with non-isolated capacity stealing.

The results reported in this section were observed from multiple and independent simulation runs, with initial conditions

and parameters, but different seeds for the random values used to drive the simulation [21]. The mean values of all generated

samples were used to produce the charts. Each simulation ran untilt = 100000 and was repeated several times to ensure that

stable results were obtained.

The mean tardiness of a set of periodic tasks was determined by
∑n

i=0 trdi/n, wheretrdi is the tardiness of taskTi, and

n the number of periodic tasks.

7.1 Capacity sharing performance

We compare the performance of CSS when scheduling a set of periodic tasks, served only by isolated servers, against

CASH and BACKSLASH, since the three algorithms greedily assign residual capacities as early as possible to the highest

priority server. However, they propose different approaches on servers’ budget exhaustion with pending jobs. We evaluate

the effect of those approaches in lowering the mean tardiness of periodic jobs.

Different sets of 6 periodic servers, with varied capacitiesQ, ranging from 20 to 50, and period distributionsP , ranging

from 60 to 600, were used, creating different types of traffic, from short to long deadlines and capacities. The execution time

ei,j of each jobJi,j varied in the range[0.7Qi, 1.4Qi]. The purpose of random workloads is to evaluate the performance of

each algorithm when tasks’ parameters differ in dynamic real-time scenarios.

Figure 2 shows the performance of the three algorithms as a function of system’s load, measuring the mean tardiness of

periodic tasks under random workloads for different probabilities of jobs’ overload.

Figure 2. Mean tardiness under random workloads

As expected, all the algorithms perform better when there is more residual capacity available to handle overloads. As

the probability of jobs’ overload increases, CSS outperforms the other algorithms in lowering the mean tardiness of periodic

jobs.

In CASH, once a task’s budget is exhausted it is immediately recharged and its deadline extended. As such, its priority

16

is effectively lowered, lowering its probability of spare capacity reclaiming before missing its deadline. BACKSLASH also

immediately updates budget and deadline, but spare capacity reclaiming is done with virtual (original) deadlines. While

BACKSLASH and CSS share the same concept of using original deadlines for spare capacity reclaiming, CSS keeps a server

in Active state until its deadline, without deadline postponement, effectively improving its probability of actually using any

spare capacity that eventually will be released until then, minimising the mean tardiness of periodic jobs. Allowing a task to

use resources allocated to the next job of the same task, may cause future jobs to miss their deadlines by larger amounts [14].

In the next section, we demonstrate the higher flexibility achieved by CSS in overload control, by allowing a needed server

to steal capacities reserved to non-isolated servers, further minimising the mean tardiness of periodic jobs.

7.2 Capacity sharing and stealing performance

The second set of simulations evaluates the effect of non-isolated capacity stealing on the performance of soft real-time

tasks.

The workload consisted of a hybrid set of periodic isolated and non-isolated servers. The maximum capacity and inter-

arrival times of the isolated servers were randomly generated in order to achieve a desired processor utilisation factor of

Uisolated. The maximum capacity and period of the non-isolated servers were uniformly distributed in order to obtain an

utilisation ofUnon−isolated = 1− Uisolated.

In the first simulation, periodic tasks were served by 1 non-isolated server and 4 isolated servers, with utilisation of

Unon−isolated = 0.2 andUisolated = 0.8, as detailed in Table 2. We varied the execution timeei,j of each jobJi,j in the

range[0.8Qi, 1.2Qi].

Server Qi Ti Type
S1 2 10 non-isolated
S2 3 15 isolated
S3 4 20 isolated
S4 5 25 isolated
S5 6 30 isolated

Table 2. Servers’ parameters

To evaluate the weight of non-isolated capacity stealing in lowering the mean tardiness of tasks, we varied the probability

of arrival of new jobs to non-isolated servers in the range[1.0, 0.1], and measured the mean tardiness of isolated and non-

isolated jobs when using both residual capacities and non-isolated capacity stealing or when only using residual capacities.

Figure 3 shows the results. As expected, when overloaded active servers have more opportunities to steal non-isolated

capacities, the mean tardiness of jobs lowers accordingly. When only using residual capacities, the mean tardiness is higher

as the probability of non-isolated jobs’ arrival lowers, since there is less residual capacities available, released by active

non-isolated servers. The experiment shows that with low variation in jobs’ computation times non-isolated capacity stealing

17

Figure 3. Small variation in execution times

produces better results, although the use of only an efficient residual capacity reclaiming mechanism achieves a slightly

poorer performance.

Figure 3 also shows that the performance of non-isolated servers is worse than the achieved performance of isolated

servers. Two reasons explain this behaviour. First, when a new job arrives for a inactive non-isolated server, some of its

reserved capacity might have been stolen by a needed active overload server. As such, if there is not any residual capacity

available at that particular time, the job must be executed with a lower capacity than expected, probably resulting in a deadline

miss2. Second, there is a big difference on the performance of a server for different configurations ofQi andTi, even if they

result in the same server utilisation [4]. It is well known that the higher the priority the smaller the capacity available, since

there is a tradeoff between capacity size and interference. A server with parameters(2Qi, 2Ti) has the same utilisation but a

higher probability of using residual capacities and steal inactive non-isolated time due to the increased period.

The second simulation has been generated with the same characteristics of the first simulation, except that a greater

variance of jobs’ execution time was introduced, ranging from[0.6Qi, 1.8Qi]. Figure 4 clearly shows a perceptibly improved

performance of servers when it is possible to steal inactive non-isolated capacities, in the presence of a large variation in

jobs’ computation times. Severe overloads can be efficiently handled with non-isolated capacity stealing, reducing the mean

tardiness of periodic jobs.

8 Conclusion

The work reported in this paper integrates and extends recent advances in dynamic deadline scheduling with resource

reservation. Namely, while achieving isolation among tasks, it can efficiently reclaim residual capacities to reduce deadline

postponements and steal capacity from inactive non-isolated servers, reducing the mean tardiness of periodic jobs.

The proposed algorithm offers the flexibility to consider the coexistence of guaranteed and best-effort servers in the same

system. In systems were some services can appear less frequently, and when they do can be served in a best-effort manner,

2This is the main reason for the anytime algorithms proposed in [19], since they will execute within available time. In these simulations, non-isolated
jobs completed their randomly generated execution times, evaluating the CSS algorithm in a more generic scenario.

18

Figure 4. Large variation in execution times

giving priority to overload control of guaranteed services, it has been demonstrated that the proposed algorithm can achieve a

higher performance when considering the mean tardiness of periodic guaranteed services. The achieved results become even

more significant when tasks’ computation times have a large variance.

The proposed dynamic budget accounting mechanism selects, at the time instant when a capacity is needed, the server to

which the budget accounting is going to be performed. That server can be any of the system’s servers and not necessarily the

currently executing server. This eliminates the need of several server states and extra queues to manage residual and stolen

capacities.

References

[1] L. Abeni. Server mechanisms for multimedia applications. Technical report, Scuola Superiore S. Anna, 1998.

[2] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems. InProceedings of the 19th IEEE RTSS,

page 4, Madrid, Spain, December 1998.

[3] G. Bernat, I. Broster, and A. Burns. Rewriting history to exploit gain time. InProceedings of the 24th IEEE Real-Time System

Symposium, pages 396–407, December 2003.

[4] G. Bernat and A. Burns. Multiple servers and capacity sharing for implementing flexible scheduling.Real-Time Systems, 22(1-

2):49–75, 2002.

[5] M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun control. InProceedings of 21th IEEE RTSS, pages 295–304,

Orlando, Florida, 2000.

[6] M. Caccamo, G. C. Buttazzo, and D. C. Thomas. Efficient reclaiming in reservation-based real-time systems with variable execution

times. IEEE Transactions on Computers, 54(2):198–213, February 2005.

[7] A. Colin and S. M. Petters. Experimental evaluation of code properties for wcet analysis. InProceedings of the 24th IEEE Interna-

tional Real-Time Systems Symposium, pages 190–199, December 2003.

[8] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling slack time in fixed priority preemptive systems. InProceedings of the 14th

Real-Time Systems Symposium, pages 222–231, 1993.

19

[9] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open environment. InProceedings of the 18th IEEE RTSS, page

308, Washington, DC, USA, 1997.

[10] T. M. Ghazalie and T. P. Baker. Aperiodic servers in a deadline scheduling environment.Real-Time Systems: The International

Journal of Time-Critical Computing, 9(1):31–67, 1995.

[11] P. Goyal, X. Guo, and H. M. Vin. A hierarchical cpu scheduler for multimedia operating systems.Readings in multimedia computing

and networking, pages 491–505, 2001.

[12] H. Kaneko, J. A. Stankovic, S. Sen, and K. Ramamritham. Integrated scheduling of multimedia and hard real-time tasks. In

Proceedings of the 17th IEEE RTSS, page 206, Washington, DC, USA, 1996.

[13] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for scheduling soft-aperiodic tasks fixed-priority preemptive systems. In

Proceedings of the 13th Real-Time Systems Symposium, pages 110–123, December 1992.

[14] C. Lin and S. A. Brandt. Improving soft real-time performance through better slack reclaiming. InProceedings of the 26th IEEE

International Real-Time Systems Symposium, pages 410–421, 2005.

[15] G. Lipari and S. Baruah. Greedy reclamation of unused bandwidth in constant-bandwidth servers. InProceedings of the 12th ECRTS,

pages 193–200, Stockholm, Sweden, 2000.

[16] C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment.Journal of the ACM,

1(20):40–61, 1973.

[17] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo. Iris: A new reclaiming algorithm for server-based real-time systems. In

Proceedings of the 10th IEEE RTAS, page 211, Toronto, Canada, 2004.

[18] L. Nogueira and L. M. Pinho. Dynamic qos-aware coalition formation. InProceedings of the 19th IEEE International Parallel and

Distributed Processing Symposium (IPDPS 2005), Denver, Colorado, April 2005.

[19] L. Nogueira and L. M. Pinho. Iterative refinement approach for qos-aware service configuration. InProceedings of the 5th IFIP

Working Conference on Distributed and Parallel Embedded Systems (DIPES 2006) (to appear), Braga,Portugal, October 2006.

[20] L. Nogueira and L. M. Pinho. Time-bounded distributed qos-aware service configuration in heterogeneous cooperative environments.

Technical report, IPP Hurray Research Group. Available at http://hurray.isep.ipp.pt/, January 2006.

[21] N. Pereira, E. Tovar, B. Batista, L. M. Pinho, and I. Broster. A few what-ifs on using statistical analysis of stochastic simulation runs

to extract timeliness properties. InProceedings of the PARTES’04 Workshop, Piza, Italy, 2004.

[22] R. Rajkumar, K. Juvva, A. Molano, , and S. Oikawa. Resource kernels: A resource-centric approach to real-time and multimedia

systems. InProceedings of the SPIE/ACM Conference on Multimedia Computing and Networking, 1998.

[23] M. Spuri and G. Buttazzo. Efficient aperiodic service under earliest deadline scheduling. InProceedings of the 15th IEEE RTSS,

pages 2–11, San Juan, Puerto Rico, 1994.

[24] P.Ölveczky and M. Caccamo. Formal simulation and analysis of the cash scheduling algorithm in real-time maude. Technical report,

Department of Informatics, University of Oslo, October 2005.

20

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

