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Abstract 

In Cooperative Intelligent Transport Systems, road users and traffic managers share information for coordinating 
their actions to improve traffic efficiency allowing the driver to adapt to the traffic situation.Its effectiveness, 
however, depends on the user 19s decision-making process, which is the main source of uncertainty in any 
mobility system and depends on the ability of the infrastructure to communicate timely andreliably. To cope with 
such a complex scenario, this paper proposes a game theory perspective based on the n-Person Prisoner 19s 
Dilemma as a metaphor to represent the uncertainty of cooperation underlined bycommunication infrastructures 
in traveller information systems. Results highlighted a close relationship between the emergence of cooperation 
and network performance, as well as the impact of the communication failure on the loss of cooperation 
sustainment, which was not recovered after the system was re-established. 
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Abstract. In Cooperative Intelligent Transport Systems, road users and
traffic managers share information for coordinating their actions to im-
prove traffic efficiency allowing the driver to adapt to the current traffic
situation. Its effectiveness, however, depends on the i) user’s decision-
making process, which is the main source of uncertainty in any mobility
system, and on the ii) ability of the infrastructure to communicate timely
and reliably. To cope with such a complex scenario, this paper proposes
a game theory perspective based on the n-Person Prisoner’s Dilemma
as a metaphor to represent the uncertainty of cooperation underlined by
communication infrastructures in traveller information systems. Results
highlight a close relationship between the emergence of cooperation and
the network performance, as well as the impact of the communication
failure on the loss of cooperation sustainment, which was not recovered
after the system was re-established.

Keywords: Game Theory · n-Person Prisoner’s Dilemma · Advanced
Traveller Information System · Cooperative Intelligent Transport Sys-
tems · Agent-based Simulation

1 Introduction

A transport network is the backbone of urban activities, designed to accommo-
date the circulation of people and goods in metropolitan areas. The dynamics of
cities and their consequences on traffic flows imply a continuous updating and
readjustment of the system. This must obtain and provide the most appropriate
information to the exact users in a timely manner, at the appropriate place and
to the intended recipient, in order to enable informed decision-making and to
influence users towards an optimal system condition.

However, uncertainty is inherent to the road traffic domain, populated by
boundedly rational agents in a dynamic environment. To cope with such a com-
plex scenario, we propose a game theory perspective based on the n-Person
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Prisoner’s Dilemma as a metaphor to represent the uncertainty of cooperation
underlined by communication infrastructures in traveller information systems.
The traveller information system is thus one of the participants together with N-1
vehicles in a two-route network setting. This work contributes with a study of
information percolation strategies, with both flawless and malfunctioning trans-
mission situations, allowing us to shed light upon the effects of information on
the coordination mechanisms. It takes into account the topology of the road
network, the characteristics of communication networks, and the composition
of transport demand. The proposed approach is leveraged on the assumption
that the effectiveness of information is highly dependent on the user’s decision-
making process, which is the main source of uncertainty in any mobility system.
It also depends on the ability of the infrastructure to communicate timely and
reliably, which is not always guaranteed. Considering cooperation will perform
optimally when no uncertainties are present in the system, i.e. there are no com-
munication failures, the information is clear, the sender is trustworthy and the
receiver adopts the information unconditionally, such an ideal scenario becomes
rather an utopia.

The remainder of the paper is organized as follows. The next Section reviews
the relevant literature. Section 3 presents the formalization in the context of
Game Theory, and describes the experimental framework. Section 4 summarizes
the results of these experiments. Finally, the main results and future directions
are discussed in Section 5.

2 Literature Review

Increasing road capacity is not a viable solution for reducing congestion, as the
Braess’s Paradox has shown (cf. [2]), hence the importance of rational and effi-
cient management of existing resources. Selfish, rational behaviour leads to sub-
optimal outcomes. The Nash Equilibrium in the Prisoner’s Dilemma, obtained
with a mutual defection strategy is not socially efficient. However, it is possible
for the system to reach an optimum, given the concept of partial cooperation,
in which some players are induced to behave cooperatively, while the rest opt
for the rational action of defection [10,11]. This is also empirically verified in a
route choice experiment [7], with an alternating cooperation emerging between
players, previously informed that by coordinating their actions they would be
able to achieve maximum time savings.

In the original formulation of the Prisoner’s Dilemma, with two participants
in a binary choice of different cost and congestion-sensitive routes, equilibrium
occurs when both players choose the lowest cost route. However, the social op-
timum only exists when one player is on the lowest cost route and the other on
the complementary route, something hardly achievable by two rational players
in a one-shot game. With repetition, in turn, if players learn to cooperate by al-
ternating between faster and slower routes and share time-saving equally among
themselves, partial cooperation can become a game equilibrium [11].
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Successive interactions of the same commuter community, by way of social
encounter, can define a repeated game [7], which, by promoting cooperation to
alternately use better and worse routes, can make each driver’s travel costs lower,
on average, than in User Equilibrium [8]. With a certain degree of altruism and a
sufficient number of route alternations between drivers, there is a self-organizing
formation of a fair equilibrium capable of maintaining the network in an optimal
state [13].

The benefits of providing rational travellers with journey time information
would depend on their knowledge and ability to predict times based on exter-
nal factors [5], enabling them to make optimal choices, thereby contributing
to reducing traffic congestion and improving the level of service provided by
road infrastructure. In reality, many travellers rely on information to make their
choices, both for its cognitive and affective value, whether in selecting routes
or modes of transport [1] However, increasing the informational burden at the
individual level leads to a state of User Equilibrium [9], as rational agents with
full knowledge will compete for the least cost paths on the road network. On the
other hand, because of the rational traits and cognitive limitations associated
with human behaviour, not all drivers would comply with the recommendations
[14], particularly when achieving a sub-optimal result [4].

The advent of ATIS has made it easier to provide current or even predictive
information on traffic flow to road users (e.g. [18]). If widely accepted by road
users, ATIS can contribute to the road network converging towards the System
Optimum rather than User Equilibrium by providing the most optimal route for
the system [10]. The study of the effects of providing traffic recommendations
on driver behaviour, in particular their impact on implicit cooperation in self-
interested agents, has demonstrated that optimized route recommendations and
extrinsic incentives in a simple two-route network led to more efficient emergence
of cooperation [9].

When all agents follow the ATIS recommendations, coordinating actions will
allow System Optimum to be achieved by changing suggestions to ensure that
all drivers receive the best and worst routes with approximately the same fre-
quency. They will thus be able to learn to cooperate without incentives, although
these are useful when cooperation between agents requires a change in behaviour
against natural propensities [11]. Accepting the recommendations can be imple-
mented in form of smart contracts, registered by a management blockchain-based
infrastructure, and confer reward-based incentives, such as tradable credits to be
exchanged for services offered by local administrations [16]. Nonetheless, drivers
may mistrust strategic routing heavily relying on incentives [12].

Dissemination of information by the infrastructure to allow drivers to make
informed decisions is essential for the performance of the system. It is therefore
important to optimize the frequency of message delivery and the efficiency of
communication between roadside and on-board units, also articulating its lo-
cation with key decision points in the network, but based on a strategy that
simultaneously privileges the maximization of coverage and the minimization of
transmission failures [3].
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In this work, we explore the formalization of the n-Person Prisoner’s Dilemma
framework to assess the degree of cooperation between driving agents and an
ATIS agent, when the latter acts as information provider to the former. To the
best of our knowledge, previous works do not consider ATIS as participant in
the game.

3 Methodological approach

The decision-making model is implemented based on the n-Person Prisoner’s
Dilemma and the payoff matrix was grounded in the social dilemma of the
“tragedy of the commons”. The participants in the game are the driving agents
constituting the population and an information service (ATIS agent), in the
form of a road side unit (RSU), which provides a route recommendation to lead
the system to an optimal state. Both driving agents population and ATIS agent
follow the Multi-Agent System (MAS) paradigm. With a game played between
the information system and the driving agents, the two possible actions of Co-
operation or Desertion correspond, respectively, to the options of Accepting or
Rejecting the suggestion provided by the ATIS agent.

3.1 n-Person Prisoner’s Dilemma

In the n-Person Prisoner’s Dilemma game each of n players has a choice between
two actions: to cooperate with the others for the “common good”; or to defect,
pursuing their own short-term selfish interests. The participants receive a reward
or punishment (the payoff ) that depends simultaneously on their choice and that
of all the others. This paradox of decision-making illustrates that the rational
collective acting in self-interest is the opposite of the socially optimum.

For the purpose of this work, the dilemma is formulated as a normal-form
game, in which driving agents make a binary decision to accept or reject the
suggestion of the ATIS agent, and the payoff function is based on the socially
beneficial outcomes that result from choosing a higher cost route, thus contribut-
ing to reduce the total cost to the system.

Within the framework of non-cooperative game theory, the following defini-
tions apply:
Definition 1. A finite normal-form game is a tuple G = ⟨I ,A, (ui)i∈I⟩, where:

– I = {1, 2, . . . , n} is a finite set of n players, with n ∈ N : n ≥ 2;
– A = A1 × · · · × An, where Ai is a non-empty finite set of actions available

to player i ∈ I, whereby a = (a1, . . . , an) ∈ A is an action profile;
– u = (u1, . . . , un), where ui : A → R, is a real-valued payoff function for

player i ∈ I.

Definition 2. Let Ai be set of actions available to player i, let aj , a
′
j ∈ Ai be two

actions of player i, and let A−i be the set of all action profiles of the remaining
players. Then, aj strictly dominates a′j if ∀a−j ∈ A−i : ui(aj , a−j) > ui(a

′
j , a−j).

An action is strictly dominant if it (strictly) dominates any other action.
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Definition 3. A player i’s best response to the action profile a−j = (a1, . . . , aj−1,
aj+1, . . . , an) is the action a∗j ∈ Ai : ui(a

∗
j , a−j) ≥ ui(aj , a−j), ∀aj ∈ Ai. An ac-

tion profile a is a Nash equilibrium if, for each player i, aj is a best response to
a−j. An outcome of a game is any action profile a ∈ A.

Definition 4. Let G and a, a′ ∈ A. Then an action profile a Pareto dominates
action profile a′ if ui(a) ≥ ui(a

′), ∀i ∈ I , and ∃i′ ∈ I : ui′(a) > ui′(a
′)

3.2 Assumptions

Assumption 1 The participants in the game—the driving agents, in this case—
are boundedly rational, meaning that individual players don’t have perfect infor-
mation about the others and try to maximize their expected value.

Assumption 2 The ATIS is a participant in the game, playing against all driv-
ing agents with a fixed strategy to cooperate (C). The payoff depends on the action
of the other players accepting or rejecting its recommendation.

Assumption 3 The common resources are the routes of the road network with
limited capacity. Each traveller may choose either to travel in a direct route or
use an alternative route, thereby not contributing to congestion.

Assumption 4 The communication channel for ATIS agents to communicate
with the driving agents is reliable and non-lossy.

Assumption 5 Driving agents have only knowledge about their experienced travel
times and reward.

Assumption 6 Each driving agent has a predefined preferred route, which cor-
responds to the route with the lowest cost.

Assumption 7 Each traveller has two possible actions; D (defect) by rejecting
the suggestion provided by the infrastructure or C (cooperate) by accepting the
recommendation and taking the proposed route.

Assumption 8 All players receive a benefit b ∈ R>0 for their decision to ac-
cept the ATIS agent’s recommendation and contribute to the social optimum,
otherwise pay a cost c ∈ R<0.

Table 1: Payoff matrix structure, where C and D stand for Cooperate and Defect

respectively. Payoffs are ordered Benefit > (Benefit+Cost) > 0 > Cost, assuming a
Cost represented by a negative number. Relating to the original matrix of the Prisoner’s
Dilemma, Temptation means getting the Benefit without Cost, Reward is gaining the
Benefit with a Cost, Punishment is not obtaining either (0), and Sucker’s payoff is
paying a Cost without realizing the Benefit.

more than n choose C n or fewer choose C

C Benefit + Cost Cost

D Benefit 0
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Considering the payoff-matrix based on the formalization of the n-Person
Prisoner’s Dilemma (cf. Table 1) for modelling a collective behaviour when users
have to compete for the road infrastructure with incomplete information, the
payoff function of player i is given by:

fi(ai, h), ai = Ci or Di, h = {0, 1, ..., n− 1} ⊂ N

where ai is player i’s action and h is the number of other cooperators.

In the payoff functions it is assumed:

Assumption 9

1. The payoff difference α = f(D,h)− f(C, h) is positive and constant
for all values of h = {0, 1, ..., n− 1} ⊂ N;

2. f(C, h) is monotonically increasing in h = {0, 1, ..., n− 1} ⊂ N;

3. f(C, n− 1) > f(D, 0).

By the first condition of the above Assumption 9, any player i will get a better
payoff by selecting defection (D) than by choosing cooperation (C), regardless of
what all other players select, i.e. the dominant action for each player is defection.
The payoff difference α is interpreted as the player’s incentive to defect. The
second condition means that the payoff of a cooperator becomes increasingly
larger as more players select cooperation. By the third condition, if all players
choose the dominant defection one will have a non-cooperative equilibrium that
will be Pareto-inferior to the outcome if they select the cooperative dominated
actions.

Considering the payoffs hold the condition:

Benefit > (Benefit+ Cost) > 0 > Cost

for n players, with n ∈ N : n ≥ 2, in view of the general case of a compound
symmetric game [6], the following payoff functions result:

f(C, h) =
h · (Benefit + Cost) + (n− h) · Cost

n

f(D,h) =
h ·Benefit + (n− h) · 0

n

(1)

From Assumption 9:

∃!k∗(2 ≤ k∗ ≤ n) ∈ N : f(C, k∗ − 2) < f(D, 0) ≤ f(C, k∗ − 1) (2)

where the unique integer k∗ is the minimum number of cooperators that guar-
antees that the cooperative payoff can be greater than or equal to the non-
cooperative payoff in case no one selects cooperation, i.e, that the overall utility
of cooperators is greater than the utility of those who reject suggestion, hence
the social dilemma in this context of traffic recommendation and route selection.



Assessing Communication Strategies in C-ITS 7

f (C,h)

f (D,h)

Bene f it

(Bene f it +Cost)

0

−120

Cost

60

180

f (C,h)=0 820
N

k∗−1=548k∗−2=547

Number of other Cooperators (h)

P
ay

o
ff

s

Fig. 1: Graph of the payoff functions for defectors (D) and cooperators (C).

One of the best-known and studied models in game theory, the Prisoner’s
Dilemma can transition from 2-person to n-person by replacing the two-dimen-
sional matrix by payoff functions [6] (cf. Equation 1), which can be plotted on
the graph in the Fig. 1, along with k∗ obtained from Equation 2.

Parameter setting. The payoffs chosen were based on the cost of the routes
from their travel times in free flow, considering a Cost = −120 and a Benefit =
180. Given the above formalization and relating it to the outcomes of the original
Prisoner’s Dilemma matrix, Punishment is 0, i.e. not get the benefit nor bear
the cost. Sucker’s payoff is the cost of taking the alternative route, hence the
negative value −120. Temptation, getting the benefit without bearing the cost
(180), is significant for the slope of the payoff functions and, consequently, for
the cooperation rates. Reward, getting the benefit with a cost, has a value of
60. It results, then, k∗ = 549 for 820 driving agents plus the ATIS agent, which
always cooperates, its payoff being a reflex of the driving agents’ cooperation.

3.3 Recommendation algorithm

The algorithm employed to build the suggestion calculates, for each route, the
product of the normalization of occupancies and the average travel time of the
last n trips, and reinforces its weight according to the cooperation rate as mea-
sured by the RSU (see. Algorithm 1). The weights calculated are then used
by the RSU to compose the route recommendations, disseminated in order to
distribute the vehicles among routes and lead the system to an optimal state.

Algorithm 1: Calculation of the weight of the routes for recommenda-
tion build and dissemination by the RSU.

Input: R – Set of routes, N – Number of vehicles plus ATIS, ρr – Occupancy of route r,
∆tr – Average of last n travel times for route r, h – Number of other cooperators,

Output: wr – Route weight
1 forall r ∈ R do

2 wr =

ρr
∑R

e=1 ρe
·

∆tr
∑R

e=1 ∆te

h
N

3 end
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3.4 Agent Behaviour

As driving agents make several passes through the network, and to observe
social and economic behaviour, they were modelled as learning agents, whose
probability of electing a particular action changes by an amount proportional to
the reward or punishment they received from the environment. If the action is
followed by a satisfying state, then the agent’s propensity to choose that par-
ticular action is reinforced. The Modified Roth-Erev Reinforcement Learning
algorithm [17] was implemented (see Algorithm 2). Driving agents choose an
action from the set of actions A, which, by Assumption 7, are Cooperate, ac-
cepting the recommendation provided by the infrastructure, or Defect, rejecting
that suggestion.

The sensitivity tests with the parameters Recency (forgetting) and Experi-
mentation of Roth-Erev algorithm evidenced its impact during the initial period
on the promptness with which cooperation emerges and the plateau around the
analytically calculated value of k∗ was established. Therefore, since it was stud-
ied the variation of cooperation in case of a system failure, the values ϕ = 0.5
and ϵ = 0.5 were chosen, for which the plateau was reached more quickly.

Algorithm 2: Modified Roth-Erev Learning Algorithm
Require: ϵ ∈ (0, 1) – Exploration rate, ϕ ∈ (0, 1) – Recency (forgetting), A – Set of

actions
Input: aj – Current action choice, qij(t) – Propensity for action aj of player i at time t,

al – Last action chosen, Pl(t) – Payoff for action al at time t, M – Number of
actions, qij(0) – Initial propensity, ϵ – Experimentation, ϕ – Recency

1 t← 0
2 initialize qij(0)← 1, for all j ∈ A
3 repeat

4 t← t + 1

// calculate the probability that player i chooses action l at time t

5

{

pil(t) =
qil(t)

∑M
j=1

qij(t)

}

l∈A

6 choose action al ← l ∈ A randomly, using the probabilities pil(t)

7 collect payoff Pl(t)

// update the propensity of action l for player i at time t + 1

8 qil(t + 1)← (1− ϕ)qil + Pl(t)(1− ϵ)

// update the propensity of all actions j different from the last chosen action l, for player i, at time t + 1

9 forall j ̸= l do

10 qij(t + 1)← (1− ϕ)qij + qij(t)
ϵ

M−1

11 end

12 until termination;

4 Results and Analysis

4.1 Simulation setup

This is an empirical work, based on simulation methods for the implementation
and on quantitative methods for the analysis of the results. A microscopic simu-
lation was chosen, using SUMO for traffic modelling [15], externally controlled by
modules written in Python, through the TraCI traffic control interface, allowing
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Fig. 2: Network diagram of the scenario, with the two monitored routes

access to the ongoing traffic simulation, obtain values of the simulated objects
and manipulate their behaviour in simulation time. Moreover, this program had
also implemented the decision models of driving agents and road infrastructure,
as well as the C-ITS service.

Scenario design. Following a principle of simplification, the designed scenario
consists of a binary network (see Fig. 2), with two routes of different cost in free-
flow, the one with lower cost being the preferred one for the driving agents. The
network is coupled with a 300m feedback loop and buffer zone, to reintroduce
the simulated vehicles and be able to maintain a network overload. The two
routes between the origin-destination pair are: i) the direct route (lower cost)
with 6000m, and ii) the alternative route (higher cost) with 9000m. The RSU
sector and feedback edge are two-lane roads, while the direct and alternative
roads are single-lane. The default maximum speed on the network is 25m s−1

(90 kmh−1).
Before the choice node, marked as origin for timing, there is a 1000m section

on which the RSU is located, with a coverage of 150m, whose zone starts at
250m of this sector. At 750m there is an inductive loop detector to carry out
route selection, as already chosen by the driving agent. On the destination node
side, there are 1000m lane areas for monitoring traffic density, in the middle of
the route and for end-of-queue assessment, as well as inductive loop detectors
to record intermediate travel times (in the middle of the route) and time to
destination (at the destination node).

Artificial population. To obtain a heterogeneous simulated population, four
different classes of vehicles were inserted in the scenario, capable of travelling at
full network speed, as shown in the Table 2, with their respective probabilities.
The ceiling on the number of driving agents to be used in the simulation aimed to
place the network in a state of congestion on the main (direct) route, with traffic
moving at a pedestrian-like speed. Thus, the theoretical value were determined
analytically considering the passenger class, and then verified in a sensitivity
analysis by gradually increasing the number of driving agents, diverting all traffic
to the direct route, until the average speed of the system dropped to 1.50m s−1

(5.40 kmh−1). After the sensitivity analysis, and also taking into account the
mitigation of parasitic noise on the network, a ceiling of 820 driving agents was
chosen.
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Table 2: Different vehicle types used in the simulation, with their respective character-
istics and probabilities.

Length bevClass
Width

amax b
emergency

vmax speed
(SVC)

Height
accel decel

decel
maxSpeed deviation

probability

(m) (m s−2) (m s−2) (m s−2) (km h−1)

4.3
1.8passenger
1.5

2.9 7.5 9.0 180 0.1 0.70

2.2
0.9motorcycle
1.5

6.0 10.0 10.0 200 0.1 0.10

7.1
2.4truck
2.4

1.3 4.0 7.0 130 0.1 0.15

12.0
2.5bus
3.0

1.2 4.0 7.0 85 0.1 0.05

Simulation Procedures. The simulation is launched with a warm-up period,
for insertion of all driving agents in the network uniformly, after which they
make a rolling start and run laps (events) during a simulated period of 24 h,
with 0.1 s steps, to allow microscopic simulations in fractions of a second, re-
quired by both the RSU dissemination mechanisms and the vehicle insertion
manoeuvres at lane changes. Experiments started by determining a baseline,
with constant dissemination, to observe the emergence of cooperation and its
impact on the network. Then it was proceeded to a progressive degradation of
the RSU dissemination, gradually increasing its transmission interval, reaching
each time fewer driving agents. Finally, an abrupt increase of this interval was
tested, restoring the initial, shorter interval, after a certain period, to analyse
the behaviour of the driving agents when faced with a failure and the restoration
of the system.

4.2 Scenario analysis

Baseline Scenario. In the baseline experiment, the emergence of cooperation
and the establishment of the plateau occurred after about 5 h (Fig. 3a). The
average vehicle speed on the network followed the increase in the number of
cooperators, reaching a plateau around 10.5m s−1 (37.8 kmh−1). Simultaneously,
the traffic flow of both routes settled at about 1750 veh/h (Fig. 3b), in line with
the travel times on each route, both at about 700 s, a value corroborated by the
average speeds registered on each route.

Progressive Degradation Scenario. To analyse the effect of a degradation of
the information service, simulations were conducted in which the dissemination
time interval doubled every 4 h, in the sequence {5, 10, 20, 40, 80, 160} s, during
which an increasing number of driving agents stopped receiving suggestions and
continued on their default preferred route.
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Fig. 3: Evolution of the number of Cooperators and Defectors, and traffic flow on each
route, in vehicles per hour (veh/h), 4 h Simple Moving Average, over a 24 h period, in
which the RSU’s dissemination time interval remained constant at 5 s.

During the first 8 h, the evolution was similar to the baseline, both in terms
of cooperation emergence (Fig.4a vs. Fig. 3a) and traffic flow (Fig.4b vs. Fig.3b),
i.e. up to 10 s interval the ATIS agent was able to deliver recommendation to all
driving agents. However, starting at 8 h of simulation, with 20 s interval, there
was witnessed a decreasing trend in the traffic flow (Fig. 4b), which followed a
drop in the number of driving agents in game (both cooperators and defectors
decreased) (Fig. 4a). The traffic flow on both routes, and consequently the mean
speed on the network, had a steeper decrease after 12 h, when the interval was
increased to 40 s, that of the alternative route tending to zero, as most of the
traffic started to converge to the direct route. The cooperation, which had also
been decreasing, suffered a strong decline and there was an inversion of trends
with an increase in the number of defectors, although the sum diminished, since
fewer driving agents were left in game.
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Fig. 4: Evolution of the number of Cooperators and Defectors, and traffic flow on each
route, in vehicles per hour (veh/h), 4 h Simple Moving Average, over a 24 h period,
in which the RSU’s dissemination time interval doubled every 4 h, in the sequence
{5, 10, 20, 40, 80, 160} s (dashed vertical lines).
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In subsequent interactions with the ATIS agent, the number of cooperators
continued to decrease, tending towards zero, while that of defectors rose, with
only part of the population, there being, however, two peaks, which can be
explained with the reduction in speed due to the congestion that was forming as
more driving agents converged on the direct route. In fact, in simulations carried
out with a smaller population, which did not generate congestion, after the
inversion, the number of defectors reached a peak and then gradually descended
in steps.

From what was observed, including by analysing the driving agents’ individ-
ual history, as they began to receive increasingly sparse recommendations from
the ATIS agent, they began to reject more often the few they did receive, even
those that were mostly cooperative in the early hours.

Sudden Degradation Scenario. Finally, a sudden degradation of the sys-
tem was tested, at 8 h of simulation, with the established cooperation plateau,
changing the dissemination intervals from 5 s to 160 s during an 8 h period. The
driving agents made successive trips without receiving any suggestion, follow-
ing the predefined route, and, as expected, there was a significant decrease in
the number of participants in the game (Fig. 5a). Similarly to what had hap-
pened with progressive degradation, the cooperation status was reversed, with
the number of cooperators decreasing, tending to zero. Meanwhile, the number
of defectors began a steeper rise, due to the congestion that had commenced
to form, keeping the vehicles very slow in the RSU coverage area and, there-
fore, the number of those who were receiving suggestions was increasing, even
with the long transmission interval, also recovering the amount of participants in
the game. However, the majority started to reject the suggestion, a behavioural
trend confirmed after the 5 s dissemination interval was re-established, at 16 h
of simulation, when they were again receiving recommendations at each passage
and the number of participants in game grew to the population size.
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Fig. 5: Evolution of the number of Cooperators and Defectors, and traffic flow on each
route, in vehicles per hour (veh/h), 4 h Simple Moving Average, over a 24 h period,
changing the RSU’s dissemination time interval, increased to 160 s at 8 h, and re-
established to 5 s at 16 h (dashed vertical lines).
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5 Conclusions

In this work, we simulated a binary road network, with routes of different cost,
supported by an ATIS that makes en-route recommendations on the best path
based on Game Theory, with a formalization of the n-Person Prisoner’s Dilemma,
in which the ATIS is also a participant of the game along with the driving agents.

With a dynamic network, susceptible to congestion formation in both routes,
it was possible to observe the correlation between the cooperation of the driving
agents towards ATIS agent and the system performance, namely in the network
average speed as well as in the traffic flows in both routes. By causing a degra-
dation of that information service there was a concomitant degradation of the
system performance with the formation of congestion in the main route, accom-
panied also by a loss of cooperation, which tended to zero. Testing full restora-
tion of service after a failure, the trend of declining cooperation continued, even
though the number of participants returned to population size, suggesting a loss
of credibility of the ATIS.

The simplicity of this road network limits the ability to generalize to more
complex networks. Further investigation with more simulations is needed with
other traffic patterns and network topologies varying both in number of routes
and origin-destination pairs. On the other hand, it is important to account for
the trustworthiness of all parties involved, which can be accomplished through
modelling a trust factor in ATIS, to understand how cooperation could be re-
stored after a system failure, for instance.
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