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Abstract 
In embedded systems, the timing behaviour of the control mechanisms are sometimes of critical importance for the 
operational safety. These high criticality systems require strict compliance with the offline predicted task execution 
time. The execution of a task when subject to preemption may vary significantly in comparison to its non-preemptive 
execution. Hence, when preemptive scheduling is required to operate the workload, preemption delay estimation is of 
paramount importance. In this paper a preemption delay estimation method for floating non-preemptive scheduling 
policies is presented. This work builds on [1], extending the model and optimising it considerably. The preemption 
delay function is subject to a major tightness improvement, considering the WCET analysis context. Moreover more 
information is provided as well in the form of an extrinsic cache misses function, which enables the method to provide a 
solution in situations where the non-preemptive regions sizes are small. Finally experimental results from the 
implementation of the proposed solutions in Heptane are provided for real benchmarks which validate the significance 
of this work. 
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Abstract—In embedded systems, the timing behaviour of the
control mechanisms are sometimes of critical importance for the
operational safety. These high criticality systems require strict com-
pliance with the offline predicted task execution time. The execution
of a task when subject to preemption may vary significantly in
comparison to its non-preemptive execution. Hence, when preemptive
scheduling is required to operate the workload, preemption delay
estimation is of paramount importance. In this paper a preemption
delay estimation method for floating non-preemptive scheduling
policies is presented. This work builds on [1], extending the model
and optimising it considerably. The preemption delay function is
subject to a major tightness improvement, considering the WCET
analysis context. Moreover more information is provided as well
in the form of an extrinsic cache misses function, which enables
the method to provide a solution in situations where the non-
preemptive regions sizes are small. Finally experimental results from
the implementation of the proposed solutions in Heptane are provided
for real benchmarks which validate the significance of this work.

I. INTRODUCTION

Embedded systems are ubiquitous and control most aspects of
our everyday environment. Such systems which have additional
timing constraints in the form of quality-of-service or hard real-
time response requirements, are termed real-time systems. For
real-time systems it is not only important to demonstrate that the
system performs functionally as expected, but it needs to be shown
that the temporal requirements are met as well.

Processors are composed of several subsystems (such as caches,
pipelines, transfer lookaside buffers, etc.) which display, at any
time-instant, an associated “state”. All these processor subsystems
quasi-continuously face state changes at run-time. In particular, it
is the case for task preemptions: when a task resumes its execution
(after being preempted), the cache(s) will display a state which
is different from its state at the time the task got interrupted.
Then, it is needed to reconstruct at least partially its working set
after the task resumes execution. The reconstruction procedure is
subject to time penalties. In real-time systems, where timeliness
is an essential property of the system, these penalties need to be
carefully evaluated to ensure that all deadlines are met.

In this work we will mainly focus on the cache-related preemp-
tion delay (CRPD), because this delay has the most important
impact on the variation of the execution time of a preempted
task [2]. Knowledge of preemption delays is crucial for the
assessment of the timing behavior of task-sets when scheduled
by a given real-time scheduling policy.

Real-time scheduling policies may be broken into three broad
categories, with respect to how preemptions are handled: (a) Non-
preemptive scheduling, where task preemptions are not allowed,
(b) Fully-preemptive scheduling, where the highest priority active
task always gets hold of the processor as soon as it arrives in
the system (by interrupting the current executing task if needed),
and (c) Limited preemptive scheduling, a hybrid solution between

non- and fully-preemptive scheduling. This latter category can be
itself divided into two subcategories: fixed non-preemptive region
scheduling, where preemption points are hard-coded in the task’s
code and preemptions are allowed only when the execution of
a task reaches one of these preemption points, and floating non-
preemptive region scheduling. In the latter one, whenever a higher
priority task is released, the currently running task starts to execute
in a non-preemptive region. The length of this non-preemptive
region is generally constant and defined offline for each task but
might be subject to online extension as is presented in [3]. When
the duration of the non-preemptive region elapses a preemption
occurs. The task which is dispatched onto the processor is then
the highest priority active task.

On the one hand the floating non-preemptive regions model is
more flexible than the fixed one and does not require modifications
in the applications. On the other hand fixed restricts the time
instants at which the preemptions may take place, which makes
it more predictable than the floating non-preemptive scheduling
policies. These policies thus provide the system designer with
more information about how the system will behave and decrease
the pessimism involved in the analysis. It is important to state that
the schedulability of these restricted preemption policies dominate
over the fully preemptive ones [4]. The theory devised onwards
assumes the scheduling using floating non-preemptive regions and
proposes a new approach to safely but more tightly bound the
preemption delay suffered by a task when compared to the state-
of-the-art.

Even though the experimental results only look at the pre-
emption delay caused by instruction caches, data caches and
other subsystems may be integrated into the analysis, simply by
construction the respective functions which describe the requests
of each task dependent on time.

II. RELATED WORK AND CONTRIBUTION

Our work presents an extension of the previously published
result [1]. CRPD estimation has been a subject of wide study in the
past. Several methods have been proposed that provide an off-line
estimation based on static analysis, for this inter-task interference
value.

Lee et al. presented one of the earliest works on CRPD
estimation for instruction-caches [5] where the notion of the set
of memory blocks that might have been used in the past and
may be used in the future, termed useful cache blocks, was first
introduced.

Since the assumption used in [5], that the value of CRPD
throughout a control flow graph’s basic block would remain
constant, no longer holds for data caches a different approach
had to be devised. Computation of the CRPD for data caches has
been later proposed by Ramaprasad and Mueller [6].



Preemption delay estimation is of little value without its integra-
tion into the schedulability test of the systems. Since preemption
delay is affected by all elements of the task-set several approaches
exist to handle this situation. The scheduling analysis by Lee [5]
is based on response-time analysis (RTA) by using the k highest
values of preemption delay and incorporating that quantity into the
response time of the task. Lee uses integer linear programming
(ILP) to compute the preemption delay suffered by each task.

Busquets et al. also used RTA [7], but considered the maximum
effect the preempted task may suffer by multiplying the number
of preemptions with the maximum CRPD. While this is more
pessimistic than Lee’s approach, it removes the complex analysis
of intersecting cache sets which for realistically sized programs
suffers from heavy state explosion.

Also a less complex algorithm in comparison to Lee’s resorting
to RTA was presented by Petters and Färber [2]. Opposed to
Busquets’ approach Petters uses the knowledge of the maximum
damage each preempting task may cause instead of only con-
sidering the worst-case preemption delay. The ILP problem is
addressed by using an iterative algorithm. Staschulat and Ernst
provided a method to estimate the CRPD for instruction cache in
[8]. This area has been extended in several works of Altmeyer et
al. [9].

Altmeyer et al. presents a summary of all of the literature
so far relative to preemption delay on fully preemptive fixed
task priority [10]. The authors also presented an enhancement
to the available work by merging the approaches of Petters and
Busquets in a safe way and considering jitter and the preemption
delay suffered by the shared resource execution. A demand-bound
function based procedure has been proposed by Ju et al. [11].
However, the general approach of computing the CRPD is similar
to Lee’s work.

All of the presented preemption delay-aware schedulability tests
are specific to fully preemptive scheduling and are much more
pessimistic than the one presented in this work since they do not
consider the evolution of the preemption delay with the program
progression of the preempted task. Our approach differs from
past work in the sense that it ties the preemption delay with
program-execution progression, thus enabling less pessimism in
the preemption delay estimation.

Restricting preemption points presents a viable way to address
the problem of preemption delay. The mechanism of preemption
deferral was first proposed by Burns et al. [12]. It has a number of
advantages as has been pointed out in several works e.g. [13], [14].
In particular, Gang Yao et al. provide a comparison of all available
methods described so far in literature [14] regarding restricted
preemptive scheduling using fixed task priority.

Bertogna and Baruah have devised a method to compute the
size of the non-preemptive regions, for earliest deadline first
(EDF) scheduling policy, using a demand-bound function based
technique [4]. In this work the slack in the schedule depending on
the length of the interval, assuming synchronous release of all the
tasks, is computed. The method fits both the fixed non-preemptive
region model and the floating one.

Several methods addressing the same issue in fixed task priority
exist [15], [3]. A fixed priority scheduling method has been
devised by Gang Yao et al. [15], where a maximum bound on
the length of fixed non-preemptive regions is provided. In this
situation the computed length of the fixed non-preemptive regions
are generally larger than in previous work, as the last chunk of a
task’s execution is not subject to further preemptions. This enables

a further reduction on the number of preemptions.
Marinho and Petters presented a method to increase, at run-time,

the length of the preemption triggered floating non-preemptive
regions for fixed task priority [3]. This method is taking advantage
of off-line knowledge and on-line task release information to
increase the length of the non-preemptive regions. This leads
generally to a steep decrease on the preemptions suffered. Similar
to previous work the preemption delay was not taken into ac-
count [3]. Reducing the number of preemptions helps decreasing
the pessimism added to the schedulability test.

The preemption delay estimation problem using fixed non-
preemptive region scheduling was presented by Bertogna et al.
[16]. In order to reduce CRPD, the usage of fixed non-preemptive
areas of code is proposed. The preemption points are thus re-
duced to a small number of well defined points. In this way
the maximum CRPD is decreased and overall system’s response
time is enhanced. This work has the limitation that it requires
manipulation of the code of tasks and thus is not an attractice
option for system developers. In particular, it is not straightforward
to take into account tasks with complex control flow graphs [16].
Additionally it can not be easily applied in situations where the
task-sets are subject to run-time change, since the maximum
allowed distance between preemption points is defined by the
higher priority workload.

Our previous work [1] only uses the information on the pre-
emption delay upper bound at any time t. In this work more
information is extracted from the task code, so that the preemption
delay estimation is decreased. The novel algorithm provided in
this work also enables the analysis to be carried out in situations
where the size of the non-preemptive regions is smaller than the
maximum value of the preemption delay for the task. Moreover
both methods were implemented in Heptane [17], and preemption
delay estimations are provided from real benchmarks [18]. In the
previous work [1] benchmark based experimental results were
not available. Similarly to our previous work, we concentrate on
instruction caches.

III. SYSTEM MODEL

The system consists of a task set τ = {τ1, . . . , τn} scheduled
to run on a single core processor. For each task τi, we assume that
we have an estimation of its worst-case execution time (WCET)
denoted by Ci.

Each task τi may generate a potentially infinite sequence of
jobs, which are the entities that contend for the processor usage.
The release of each consecutive job from τi is separated in time
by at least Ti time units (sporadic task model). Every job of τi has
to complete its workload Di time units after it was released. It is
assumed that Ti and Di are independent (unrelated task-model).

There is an inherent priority relation between the jobs which
governs the contention for the processor. This contention will
be treated in a limited preemption model, which means that
preemptions are allowed but are subject to some restrictions. This
work supports both fixed task priority [15] and EDF [4] with
floating non-preemptive region scheduling policies.

A floating non-preemptive region starts when a job is executing
on the processor and a higher priority job is released. We denote
by Qi the length of the non-preemptive regions of task τi. This
means that once a floating non-preemptive region has started,
it will last for Qi time units unless the currently running job
completes before. Therefore, the preemption points which lead
to the worst-case cumulative preemption delay are subject to the



constraint of being separated by at least Qi time units. The first
preemption can only happen after the task τi has completed Qi

units of execution. The Qi value is a characteristic of each task.
If the currently running job has not yet completed execution after
the Qi time units elapse then the highest priority job in the ready
queue preempts it. The determination of Qi can be performed by
following the approaches determined by Bertogna and Baruah [4],
Gang Yao et al. [15] or Marinho and Petters [3] and is assumed
given within this work.

When a preempted task (say τi) resumes its execution, its
remaining execution time will eventually increase, in comparison
to the situation in which it was not preempted. This effect is due
to the loss of working set in the hardware state. Within this work
we focus on the largest contributor which is the CRPD. We call
this increase in the remaining execution time the preemption delay
that the task τi has to account for. This delay is as high as the
amount of information, useful for the remaining execution of τi,
evicted during the preemption.

The preemption delay varies during the execution of the job.
This is illustrated with a simple example. Suppose that a task
starts its execution by loading from the memory an important
amount of data. Then the task processes all these data in a short
period of time and finally, it performs a long-time computation
using only a small subset of the data. In this case, the maximum
preemption delay during the beginning of the task will be high,
since in the worst-case scenario all the loaded data might be
evicted during the preemption, hence forcing the task to reload
them at the return from preemption. Once the data have been
processed, the maximum preemption delay falls drastically, since
a preemption during the long-time computation can only force the
task to reload the few data elements that it needs when resuming
its execution.

Each task may be characterised thus by a task-specific preemp-
tion delay function. As jobs execute their preemption delay varies
with their progression through their execution. We model this
varying cost of every task τi using a preemption delay function.
As such, it displays, for any time-instant t where the function
is defined, an upper bound on the preemption cost that the task
would incur if it was preempted at time t. This function does not
take into account the preemption delay that has to be paid in the
post-preemption execution, as such it is only valid for the first
preemption since it .

IV. COUPLING PREEMPTION DELAY COST WITH EXECUTION
INTERVALS

This section first focuses on determining the preemption delay
function fi(t) of every task τi, that defines the maximum preemp-
tion delay when τi be preempted t time units after starting. The
determination of fi(t) directly comes from [1]. The computation
of fi(t) requires the CRPD when preempted at every basic block
(BBb) to be known (see § IV-A). Then the set of basic blocks
that may be executed at time t has to be computed (see §
IV-B). Function fi(t) can be computed as detailed in § IV-C.
The concept of extrinsic cache miss, that will be used to tighten
CRPD estimation, is introduced in § IV-D.

A. CRPD estimation
The CRPD when preempting a task at a given basic block is

estimated using the method proposed by Negi et al in [19]. The
method relies on the fixed-point computation, for every basic block
of:
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Fig. 1. Example of CFG for loop-free code. The CFG is composed of several
basic blocks connected by directed edges that represent jumps in the code. Each
basic block is a set of sequential instructions delimited by a jump. In the left part,
intervals [emin

b , e
max
b ] represent the minimum and maximum execution times of

basic block b. In the right part, intervals [smin
b , s

max
b ] represent the earliest and

latest start time of every BBb.

• Reaching Cache States (RCS). The Reaching Cache States
at a basic block BBb of a program, denoted as RCSb, is the
set of possible cache states when BBb is reached via any
incoming program path. This notion captures the possible
cache content when the task is preempted at BBb.

• Live Cache State (LCS). The LCS at BBb, denoted as LCSb,
is the set of memory blocks that may be referenced in
the future in any outgoing program path from BBb. This
notion captures the potential reuse of memory blocks after a
preemption point occurring at BBb.

Cache Utility Vectors (CUV) as defined in [19] are then computed,
and correspond to the cache blocks that may be in the cache (in
RCS) and may be reused (in LCS). As our method does not make
any assumption on the higher priority tasks, no information on
the task(s) that can preempt a given task is exploited. The CRPD
at BBb is then simply the delay to reload all the cache blocks in
CUVb, without considering cache usage in the preempting task(s)
as done by Negi et al. [19] and Altmeyer et al. [20].

B. Computing execution intervals
Computing fi(t) for every task τi, represented by its control

flow graph (see left part of Figure 1), requires to obtain, the
interval of time during which every basic block b of τi might
execute. The minimum and maximum execution time of every
basic block b, noted respectively e

min
b and e

max
b have to be known.

The cache analysis method used to classify every memory access
uses the following categories:

• AH (Always Hit) when the access will always result in a hit
• AM (Always Miss) when the access will always result in a

miss
• FM (First Miss) the access could neither be classified as hit

or miss the first time it occurs but will result in cache hits
afterwards (this category is used for code inside loops)

• NC (Not Classified) when no more precise categorization can
be achieved

Given the classification of every reference, respective values of
e
min
b and e

max
b are easily generated by considering the lower and

higher delays allowed by the category (e.g. hit delay and miss
delay for the category NC). The first iteration of every loop is
virtually unrolled before applying the analysis in order to limit
the number of references classified FM and NC.

Then, computing execution intervals on loop-free code requires
to know for every basic block b its earliest and latest start offsets



s
min
b and s

max
b . This can be done by a breadth-first traversal of

the CFG, applying to every traversed basic block b the following
formulas:

s
min
1 = s

max
1 = 0 (1)

s
min
b = min

x∈pred(b)
{smin

x + e
min
x } (2)

s
max
b = max

x∈pred(b)
{smax

x + e
max
x } (3)

with pred(b) the direct predecessor(s) of a basic block b in the
CFG. Values for e

min
x and e

max
x can be produced by standard

WCET estimation tools (variations between e
min
x and e

max
x come

for example from memory references that can not be determined
statically as hitting of missing the cache).

The right part of Figure 1 shows for every basic block its earliest
and latest start offset after applying the above formulas. Then, the
time interval within which every basic block b may execute is
[s

min
b , s

max
b + e

max
b ].

The method was generalized to cope with natural loops and
function calls as follows. Regarding loops, computation of ex-
ecution time intervals is done on every loop starting from the
innermost one, and then considering every loop as a single node
with known earliest and latest start offsets. Similarly, in case of
function calls, each function is analyzed for every call context,
starting from the leaves in the acyclic call graph.

C. Computation of fi(t)

Knowing the possible execution interval [s
min
b , s

max
b + e

max
b ]

of every basic block b, the set of basic blocks that might execute
at a given time instant t, noted BB(t) is known. For each basic
block b in this set, fi(t) can then be computed as follows, with
CRPDb the CRPD paid when preempting the task at basic block
BBb:

fi(t) = max
∀b∈BB(t)

{CRPDb}

D. Extrinsic Cache Miss Function

Until now the preemption delay is assumed to be paid imme-
diately following a preemption [1]. By analysing the task code it
is possible to extract information on when the preemption delay
may be paid. This is captured through the concept of Extrinsic
Cache Miss.

Definition 1 (Extrinsic Cache Miss). A memory access resulting
in a cache miss due to the prior eviction of the requested cache
line by code not belonging to the current task is termed extrinsic
cache miss

The extrinsic cache miss function Gi(t) is an upper bound on
the number of extrinsic cache misses a task might suffer in the
interval [0, t]. Gi(t) is then propostional to the upper-bound on the
preemption delay that might have been paid in the same interval.
As we will see, using the Gi(t) information it is possible to
provide preemption delay estimations in the presented framework
for situations where Qi � maxt(fi(t)), whereas in the previous
work [1] this was not possible. This subsection is devoted to the
explanation of the procedure to compute this Gi(t) function.

Each basic block has a fixed number of memory requests which
may lead to extrinsic cache miss during its execution. For each
BBi this number is given by

0
temax

b

10

10× BRT

glocali

Fig. 2. BBb Example g
local

b Function Where BBb Execution May Generate at
Most 10 Extrinsic Cache Misses

extrinsic-missb = |RCSb ∩ genb| (4)

Where genb is defined as the set of memory blocks accesses
generated during the execution of BBb and RCSb is the set of
memory blocks that may be in the cache while BBb is being
executed. The intersection of both sets at each BBb effectively
yields the upper bound on the number of extrinsic cache misses
that may occur while BBb is executed after a preemption.

For each BBb a function can then be constructed. This function
g
local

b , has all the memory requests that may lead to an extrinsic
cache miss in BBb. These requests are assumed to occur as early
as possible and at the maximum rate at which they can occur, as
is displayed in Figure 2. This function is defined in the interval
[0, e

max

b ], which is the maximum length execution time interval for
BBb. Let us define the maximum time for memory block reload
operation to complete:

BRT
def

=
THIT + TMISS

THIT

where THIT is the time to serve a cache hit, and TMISS is
the time to serve a cache miss. The constant BRT imposes a
restriction on the maximum rate in comparison to progression
that preemption delay may be paid. Assuming BRT �= ∞ ensures
that while paying preemption delay progression is still occurring,
albeit at a slower pace. Intuitively BRT is an upper bound on the
maximum rate at which cache miss penalty may be generated
while executing the program. Formally the g

local

b function is
defined per basic block as:

g
local

b
def

=

�
BRT×t , 0 � t � extrinsic-missb

BRT

extrinsic-missb ,
extrinsic-missb

BRT < t � e
max

b
(5)

A task-wide Gi function is constructed starting from the first
BB1 of the CFG. An initial function g

in

1
is fed into the CFG.

Where g
in

1
(t) = 0, ∀t. The input functions for each BBb are then

merged together with g
local

b as is shown in Figure 3. Two merge
operations are defined to aid the computation of the task-wide
extrinsic cache misses function. Each block outputs a function
g
out

b . Accordingly each basic block has one input function g
in

b .
This input function is a product of the merging of all the output
functions of the BBb parent nodes. The input merging operation
is defined by:

g
in

b
def

= ⊕
x∈pred(b)

g
out

x (t) = max
t∈[0,Ci],x∈pred(b)

{goutx (t)} (6)

The input function is then merged with the corresponding node-
specific g

local

b function using the merge-at-node operation defined



in the following way:

g
local

b ⊗ g
in

b
def

=

�
g
in

b (t) , t � s
min

b

g
in

b (t) + g
local

b (t− s
min

b ) , s
min

b < t � s
min

b + e
max

b

(7)

This assumes the knowledge of the earliest time the node may
be accessed (smin

b ). The g
out

n where BBn is the last basic block in
the CFG (return block) is the task-wide Gi function. iIn the case
that several return blocks exist then the task-wide Gi function is
obtained by combining the g

out

n functions of all the return blocks
using the merge-at-edge operator.

Gi
def

= ⊕
j∈RET

g
out

j (8)

The procedure described is graphically explained in Figure 3.
In this figure only one BBb is portrayed for clarification. The
procedure repeats for all the BBb of the CFG.

kj

b

goutj goutk

ginb glocalb

goutb

ginb

Fig. 3. g
out

b Computation for BBb, Where BBj and BBk are BBb Predecessors.

Theorem 1. The function Gi(t) is an upper-bound on the extrinsic
cache misses occurring during the execution of task τi for any time
t.

Proof: The function g
in

1
is an upper bound on the number of

extrinsic cache misses for the time instant 0 since there can occur
zero extrinsic cache misses until this time instant. For each basic
block all the memory accesses which may generate an extrinsic
cache miss are considered to occur as early as possible (smin

b ), at
the maximum possible rate (BRT). Hence g

local

b is an upper bound
on the extrinsic cache misses occurring in BBb. Then, the function
g
out

1
is an upper-bound on the number of extrinsic cache misses

until the execution of the task exits BB1. The same function g
out

1

is then the g
in

b for all the BBb child nodes of BB1.
Since the merge-at-node operation integrates the maximum

number of extrinsic cache misses occurring in BBb at the earliest
time that these could occur (smin

b ) and at the maximum rate (BRT),
it holds true that merge-at-node operation carried out in each of
BB1 child preserves the property that each g

out

b is itself an upper-
bound on the number of extrinsic cache misses occurring from the
start of task execution until it took the path leading to BBb.

If a node BBb has more than one parent then g
in

b is constructed
using the merge-at-edge operator over all the node predecessors
output functions (goutj ). Since the merge-at-node operation takes
the maximum value for all the t ∈ [0, Ci] of the parents g

out

j

output functions then it holds true that ginb is still an upper-bound
on the extrinsic cache misses that could occur from the start of
task execution until it took the path leading to BBb. This reasoning
holds true for all nodes in the CFG.

Lastly to compute the Gi(t) function the merge-at-edge operator
is applied across all the return edges of the CFG. Hence the

prog +Qi

pmax

D(x, t)

p∩pnext

delaymax

Qi − delaymax

Qi

fi(t)

Gi(t)− SH

prog
lmax

fi(pmax)

Gi(lmax)− SH

Fig. 4. Algorithm Iteration Sketch

Gi(t) function is an upper bound on all the extrinsic cache misses
occurring for all the possible execution paths in task τi.

V. PREEMPTION DELAY COMPUTATION

For the preemption delay upper bound computation two func-
tions (fi(t) and Gi(t)) are considered. The fi(t) function repre-
sents an upper bound on the preemption delay a task may face for
any point in time, whereas the Gi function yields the upper bound
on the amount of preemption delay in the time interval [0, t].

Using the knowledge provided by fi(t) function itself pre-
vents the application of the method in scenarios where Qi �
maxt(fi(t)). This was one of the major limitations of the method
presented in [1] which is now relaxed in this work. This fact arises
from a situation where no progression can be performed since
there is always more preemption delay to be paid than the length
of the considered non-preemptive execution region. As stated in
Section III a task will always execute non-preemptively for at least
Qi time units before a preemption occurs, unless it completes
before the end of the non-preemptive region.

Description of the Preemption Delay Estimation Algorithm 1.
Initially we will explain the intuition of the approach on Figure 4
before presenting the actual algorithm. Suppose that prog is the
current progression in the task τi execution. Considering the next
preemption point, the approach is looking for the lower bound on
the progression which will be achieved within the next Qi time
units in any preemption scenario. For this, functions fi(t) and
Gi(t) are investigated from the current prog to prog+Qi. On the
ordinate also at length Qi a line D(x, t) is drawn to prog+Qi.

Two intersection points with the D(x, t) function are obtained
for fi(t) and Gi(t) with an offset of SH units. One is the point
p∩ where fi(t) first crosses D(x, t). It limits the range of values
which need to be considered for the fi(t) function. A preemption
past this value would lead to a situation where this point would
again be considered in a subsequent iteration, since then prog

would not pass this point in the current iteration.
Within the interval prog to prog+lmax or to pnext, delaymax

is determined simply by choosing the minimum value between the
maximum values of the functions fi(t) and Gi(t) − SH in the
given interval. That means in an interval Qi under any preemption
scenario at least Qi − delay

max
progress in program execution

will be achieved. It is a conservative bound as a later preemption



means that also the non preemptible region will only start then.
This point prog+Qi−delay

max
will serve as new starting point.

The second point is lmax. At lmax the function Gi(t) − SH

intersects D(x, t). At this point Gi(lmax)−SH cache misses have
occurred in the [prog, lmax] interval. Using Gi(t) information only
a progression of prog+Q − Gi(lmax) − SH is then carried out
where prog−Gi(lmax)− SH are spent reloading cache content.

Algorithm 1: Upper-Bound the Preemption Delay
Input : fi(t): preemption delay function of task τi.

Gi(t): extrinsic cache misses function of task τi.
Q: length of the non-preemptive region

Output: total delay: cumulative preemption delay suffered by τi

1 total delay ← 0;
2 delay

max
← 0 ;

3 pnext ← Q ;
4 SH ← 0 ;
/* While the next progression is not beyond Ci */

5 while pnext < Ci do
/* Update time, progression and delay */

6 prog ← pnext ;
/* Compute the next progression step and the

next delay to account for, based on the
fi(t) function */

7 p∩ ← min{px} such that
8 px ∈ [prog, prog+Q]
9 and px = prog+Q− fi(px) ;

10 if p∩ = null then p∩ ← prog+Q;
11 pmax ← argmaxpx∈[prog,p∩]

{fi(px)};
12 lmax = min((t|glocal(t)− SH = −t+ prog+Q), prog+Q);
13 if Gi(lmax)− SH � fi(pmax) then
14 delay

max
← Gi(lmax)− SH;

15 SH = Gi(lmax);
16 else
17 delay

max
← fi(pmax);

18 SH = SH + fi(pmax);

19 delay
max

← min(fi(pmax), Gi(lmax));
20 pnext ← prog+Q− delay

max
;

21 total delay ← total delay+delay
max

;

22 return total delay ;

Returning to the Algorithm 1: Lines 1–4 initialise the variables.
The variable prog memorizes the current progression in the task’s
operations while total delay records the cumulative preemption
delay accounted for up to the current progression. As the task
τi executes, it accounts for progressing in its execution (and the
variable prog is increased) and for the preemption delay (which
updates the variable total delay). The algorithm is iterative,
and at each iteration the variables delay

max
and pnext are the

preemption delay taking place only in the current iteration and the
next progression point in τi’s execution at which the next iteration
will start, respectively. Lastly the variable SH, which represents
the offset of the Gi(t) function, is initialised. Lines 1–4 can be
seen as the first iteration of the algorithm. delay

max
is set to 0

and pnext to Qi, because no preemption can occur during the first
Qi time units of τi’s execution. The algorithm starts iterating at
line 5, and it iterates as long as the next computed progression
point pnext does not fall beyond τi’s execution boundary. Line 6
shifts the current progression point of τi to the computed value
pnext. In lines 7 – 11 the fi(t) preemption delay computation for
the current iteration is carried out. Subsequently in lines 11 and
12 the the preemption delay computation is carried out with the
Gi(t) function information. From line 13 to 19 the a decision
is carried out on the amount of preemption delay to consider in
the current iteration. This value is the minimum between the one

estimated with the Gi(t) function and the fi(t) function, since
both functions hold an upper bound on the preemption delay for a
given interval. THen the next progression point pnext is computed
with the knowledge of the maximum delay that τi could suffer
while progressing in its operations from its current progression
point to pnext. Finally, line 21 adds this maximum delay to the
current cumulative delay accounted so far.

In the following Theorem 2, we prove that the value returned
by Algorithm 1 is an upper-bound on the cumulative preemption
delay that the given task τi might suffer during its execution.
This implies that the WCET of τi (while taking into account
all the possible preemption delays that τi might suffer during its
execution) is given by

C
�
i
def

= Ci + total delay (9)

where total delay is the value returned by Algorithm 1.

Theorem 2. Algorithm 1 returns an upper-bound on the preemp-
tion delay that a given task τi can suffer during the execution of
any of its jobs.

Proof: Algorithm 1 computes the maximum cumulative pre-
emption delay iteratively, by progressing step by step through the
execution of the task τi. Hereafter, we use the notation prog

(k) to
denote the progression through τi’s execution at the beginning of
the k

th iteration of the algorithm. Similarly, total delay
(k) will

be used to denote the cumulative preemption delay that τi has
suffered until it reached a progression of prog

(k). In this proof,
we show that at each iteration k > 0, total delay

(k) actually
provides an upper-bound on the cumulative preemption delay that
τi might suffer before reaching a progression of prog

(k) in its
execution. The proof is made by induction.

Basic step.
Algorithm 1 first considers that τi progresses by Qi time units

in its execution without suffering any preemption delay (since
it cannot get preempted during these first Qi time units). We
consider this first step as the first iteration of the algorithm. That is,
straightforwardly, total delay

(1)
= 0 is an upper (and even exact)

bound on the cumulative preemption delay that τi may suffer
before reaching a progression of Qi time units in its execution.

Induction step.
We assume (by induction) that total delay

(k), k � 1, is an
upper-bound on the cumulative preemption delay that τi might
suffer before reaching a progression of prog

(k) time units in its
execution.

During the k
th iteration, Algorithm 1 computes prog

(k+1) and
total delay

(k+1) as follows:

prog(k+1) = prog(k) +Qi − delay
max

(10)
total delay(k+1) = total delay(k) +delay

max
(11)

where

delay
max

= min(fi(pmax), Gi(lmax)) (12)
pmax = argmax

px∈[prog(k),p∩]
{fi(px)} (13)

p∩ = min{px} such that (14)
px ∈ [prog(k), prog(k) +Qi]

and px = prog(k) +Qi − fi(px)

lmax = min((t|glocal(t)− SH = −t+ prog+Q), prog+Q)

(15)



Equations 10 and 11 can be interpreted as follows. During the k
th

iteration, Algorithm 1 assumes that τi executes for Qi time units
during which τi progresses by Qi − delay

max
units of time in its

execution and incurs a delay of delay
max

; The algorithm assumes
that τi gets preempted when its progression reaches pmax given by
Equation 13. Below we show that choosing any other preemption
point pother �= pmax would ultimately1 result in a cumulative
preemption delay lower than the one returned by Algorithm 1,
thus showing that the value returned by Algorithm 1 is an upper-
bound. Two cases may arise: pother > pnext or pother ≤ pnext.

Case 1: pother > pnext. This means that τi progresses in its ex-
ecution until it reaches pnext without being preempted, i.e., from a
progression of prog(k), τi reaches a progression of pnext by being
executed only for (pnext − prog

(k)
) � Qi time units, and with

an unchanged cumulative preemption delay of total delay
(k). On

the other hand, in the execution scenario built by Algorithm 1,
τi’s execution reaches a progression of prog

(k+1)
= pnext by

being executed for Qi time units, and with a cumulative preemp-
tion delay of total delay

(k+1)
= total delay

(k)
+delay

max
≥

total delay
(k). In other words, Algorithm 1 manages to progress

slower in τi’s execution while suffering from a greater preemption
delay. Furthermore, pother is still a candidate preemption point for
a further iteration of Algorithm 1.

Case 2. pother ≤ pnext. After executing τi for Qi time units, we
have that

1) the delay of the preemption that occurs when τi’s progres-
sion reaches pother has been totally accounted for (since
pother < pnext ≤ p∩).

2) the progression of τi in this scenario becomes

prog
other

= prog(k) +Qi − fi(pother)

≥ prog(k) +Qi − fi(pmax)

≥ prog(k+1) (16)

3) the cumulative preemption delay becomes

total delay
other

= total delay(k) +fi(pother)

≤ total delay(k) +fi(pmax)

≤ total delay(k+1) (17)

Thus, after executing τi for Qi time units Algorithm 1 progressed
less in the execution of τi (Inequality 16) while suffering from
a higher preemption delay (Inequality 17). As a consequence
of Cases 1 and 2, it holds at each iteration of Algorithm 1
that choosing to preempt the task when it reaches a progression
of pmax ultimately leads to an upper-bound on its cumulative
preemption delay.

A. Reducing the pessimism of fi(t)
For computation of the preemption delay estimation the ob-

tained fi(t) function is pessimistic. The main source of pessimism
is the fact that the earliest possible entry time for each basic block
is considered in the function computation.

Even though the fi(t) function is an upper bound on the
preemption delay that might be paid at any progression point t

in the task a less pessimistic function may be extracted.
In fact if a basic block is accessed earlier than its worst-case

access time then the execution is in a situation which will never
lead to the WCET. If the task is preempted in this basic block at an
earlier time than the worst-case access time, the preemption delay

1when τi’s execution will be completed

that has to be paid is already doubly accounted on the WCET
computation.

To exemplify this intuition consider the example provided in
Figure 1. For the case of BB4, s

min
b = 35, s

max
b = 65 and

e
max
b = 20. Let CRPD4 = 5. If this BB4 is accessed at t = 40,

and a preemption occurs at t
�
= 45, when the task resumes its

execution at most 5 units of time will be spent regaining cache
state. The BB4 exit time would be t

��
= 65 whereas the worst-case

exit time computed statically is s
max
b + e

max
b = 85. One can then

observe that t�� < s
max
b + e

max
b = 85, and derive the conclusion

that preemptions occurring in BB4 at an earlier time distant from
the WCET behaviour are already accounted for in the WCET
computation. Clearly t

�� is smaller than the statically computed
worst-case exit time and hence it doesn’t make sense to consider
a preemption delay of 5 units when the basic block is accessed at
time t = 40. A more thorough definition and explanation of the
concept follows.

The optimised fi(t) function is then defined as:

fi(t) = max
b

{f local

b (t)}

where f
local

b (t) is defined in the following manner:

f
local

b (t)
def

=





0, 0 � t < max(smax
b − CRPDb, s

min
b )

CRPDb × (t− s
max
b − CRPDb)

,max(smax
b − CRPDb, s

min
b ) � t � s

max
b

CRPDb, s
max
b < t � e

max
b

0, t > e
max
b

(18)

Lemma 1. Assuming an entry time t1 such that smax
b −CRPDb �

t1 < s
max
b , and a preemption occurring at t1 The progression

point achieved in a Qi length time window assuming a preemption
delay payment of f

local

b (t1) is equal to the progression point
assuming an entry time t2 = s

max

b .
Proof: f local

b (t1) = t1 − (s
max

b − CRPDb)

p1 = Qi − t1 + (s
max

b − CRPDb) + t1

p2 = Qi − CRPDb +t2

p1 = p2 ⇔ Qi − (t1 − (s
max

b − CRPDb)) + t1 = Qi −
CRPDb +t2 ⇔ Qi + s

max

b = Qi + t2.
Since t2 = s

max

b the Lemma is proved

There exits a set of possible paths from BB1 until BBb such
that for all these possible program paths BBb will be accessed at
a progression point p

� in the program where p
� ∈ [s

min
b , s

max
b ].

For all possible paths where the entry time of BBb for which
p
�
< s

max
b then the execution is earlier in relation to the WCET

by s
max
b − p

� time units.
When computing the fi(t) function for each progression point

considered the point with the maximum preemption delay is
chosen. It is the case that for the paths which diverge from the
WCET behaviour then paying preemption delay in this paths
would just bring them closer to the WCET behaviour. As long
as the progression is sufficiently distanced from the worst-case
pattern for BBb execution then no preemption delay has to be
considered, since this would lead to a double accounting of the
preemption delay.



smin
b

CRPDb

smax
b − crpdb tsmax

b

Fig. 5. f
local

b (t) Graphical Example

Consider a situation where s
max
b − p

�
> CRPDb, if the task

would be executing in BBb, by paying the preemption delay of
CRPDb would not bring this execution to the WCET scenario.
In the same way if 0 < s

max
b − p

�
< CRPDb then paying a

portion of the preemption delay payment given by s
max
b −p

� would
bring the execution exactly into the worst-case scenario. From this
point onwards the maximum preemption delay for the basic block
should be paid since the progression on BBb is already in a worst-
case scenario.

Lemma 2. For all the BBb that a given progression point p

might belong to, the worst-case preemption delay is given by
maxb {max(min(CRPDb −(s

max
b − p),CRPDb), 0)}.

Proof: For a given BBb and a current actual progression
point p, if CRPDb −(s

max
b −p) < 0 then the current execution in

BBb is s
max
b − p time units earlier in relation to the worst-case

entry time behaviour for the given block. Paying CRPDb in this
instance is not putting it in a worse situation than the worst-case
entry s

max
b − p and hence is not leading to an optimistic analysis

result.

Theorem 3. The function fi(t) provides a safe upper bound on
the preemption delay to be paid during a preemption of BBb in
a WCET context

Proof: In Lemma 1 it is shown that any scenario where a
basic block is considered to be accessed between s

max
b −CRPDb

and s
max
b will be treated such that is equivalent of accessing BBb

at time s
max
b . Additionally, in Lemma 2 it is proven that BBb

arriving before s
max
b −CRPDb the actual progression in the real

execution is at least as good as arriving at smax
b . Hence, using

fi(t) provides a safe upper bound for the preemption delay to be
taken into account during analysis.

Figure 5 presents a graphical representation of the f
local

b (t)

function. From s
min
b to s

max
b −CRPDb the value of the function

f
local

b (t) is zero. In the interval s
max
b − CRPDb to s

max
b the

function f
local

b (t) has a first derivative of one. Lastly, from s
max
b

to s
max
b + e

max
b the function tops at the CRPDb value.

0 10 20 30 40 50 60 70 80 90 100 110 120 t

fi(t)

Fig. 6. Task Wide fi(t) Obtention

In Figure 6 the procedure to compute the task-wide fi(t)

function is graphically portrayed. Several f local

b (t) functions are
displayed with dashed lines. For all the instants in time, the
maximum value of all the local f

local

b (t) is taken as the value
of fi(t) .

B. Reducing the pessimism of Gi(t)

Following the same reasoning as in section V-A, the Gi(t)

function holds pessimism for the preemption delay computation
in a WCET analysis context.

The merge-at-node operation is then defined as:

g
local

b ⊗ g
in

b
def

=





g
in

b (t)
, t � max(smax

b − g
local

i (emax

b ), smin

b )

max(ginb (t) + g
local

b (t−max(smax

b − g
local

i (emax

b ), smin

b )))
,max(smax

b − g
local

b (emax

b ), smin

b ) < t < Ci

(19)

In this way the preemption delay is only accounted for when
the task execution is in a path that would lead into the WCET.

Theorem 4. The function Gi(t) is an upper-bound on the extrinsic
cache misses occurring during the execution of task τi for any time
t in a WCET context.

Proof: The redefinition of the merge-at-node operation inte-
grates the g

local

b function only at the time instant t = max(s
max

b −
g
local

b (e
max

b ), s
min

b ). For all the time instants t
�
< t if the BBb is

executing and generates an extrinsic cache miss then this value
was already accounted for in the WCET analysis since:
t
�
+ g

local

b (e
max

b ) + e
max

b < s
max

b + e
max

b ⇔ t
�
+ g

local

b (e
max

b <

s
max

b ⇔ t
�
< s

max

b − g
local

b (e
max

b )

The only change to the computation procedure of Gi(t) lies
on the merge-at-node operation. Hence proving the correctness
of the merge-at-node operation redefinition along with Theorem 1
proves the present theorem.

C. Experimental Evaluation
In order to experimentally validate both the new preemption

delay estimation Algorithm 1 and the usefulness of its input
functions, the fi(t) and g

local
(t) function extraction procedures

were implemented in Heptane. Results are also provided for the
previous function fi(t) [1]. The framework is trialled on a set
of benchmarks available online [18]. From the set of available
benchmarks only the results for acquisition task, autopilot task 6,
autopilot task 9 and interrupt handler routine are shown. Due to
space constraints, not all the benchmark results are presented.

All the results are given for a direct-mapped instruction cache
of 4KB, with a line size of 32 bytes (8 instructions). The data
cache is perfect (i.e. data cache misses are assumed never to
occur). Only results regarding instruction caches are presented at
this time since data caches were not yet addressed theoretically.
The analyzed code is mips code (fixed-size 4B instructions). The
code also works with set-associative cache. There is only one level
of cache, with THIT = 1 cycle when the fetched instruction hits
the cache, THIT = 10 cycles in case of a miss.

D. fi(t) functions
A comparative evaluation between the prior fi(t) function

extraction procedure and the more recent one is presented. As
is apparent in all the benchmarks the current method enables a



Fig. 7. [1] and Current fi(t) Function for Acquisition Task

Fig. 8. [1] and Current fi(t) Function for Autopilot.t6

Fig. 9. [1] and Current fi(t) Function for Autopilot.t9

Fig. 10. [1] and Current fi(t) Function for Interrupt Handler

considerable increase in the amount of information present in the
new fi(t) functions. The previous fi(t) [1] is always greater than
the improved version. With this new concepts it is then possible
to decrease the level of pessimism present in the analysis of the
preemption delay. The major differences are present in the results
shown in Figures 8, 9 and 10. For these benchmarks the results
using the new fi(t) function are much less pessimistic than the
prior method presented in [1].

E. Gi(t) Functions

The Gi(t) function enables the preemption delay to be com-
puted whenever Qi is smaller than any fi(t) value. In this
subsection results for the Gi(t) function extraction on the several

Fig. 11. g
local Function for Acquisition Task

Fig. 12. g
local Function for Autopilot.t6

Fig. 13. g
local Function for Autopilot.t9

Fig. 14. g
local Function for Interrupt Handler

selected benchmarks are presented. Only the less pessimistic
version is presented. From Figures 12 to 14 it is apparent that
the Gi(t) function does not reach its peak value too soon. In
Figure 11 the peak is reached much sooner in relation to the Ci

of the task contrary to the other benchmarks.

F. Preemption Delay Estimations

The preemption delay estimations are presented in this subsec-
tion. Only the improved version of the fi(t) is used, since it is
obvious that the results could never be worse than using the old
version of the function. In all the results present in Figures 15 to
18 it is apparent that the results are much less pessimistic both for
the previous method (which only uses fi(t) information) and for



Fig. 15. Preemption Delay Estimations Function for Acquisition Task

Fig. 16. Preemption Delay Estimations Function for Autopilot.t6

Fig. 17. Preemption Delay Estimations Function for Autopilot.t9

Fig. 18. Preemption Delay Estimations Function for Interrupt Handler

the new method with the Gi(t) knowledge in comparison to the
intuitive state of the art method. The state of the art method was
published in [1] and is an intuitive upper bound on the preemption
delay for the floating non-preemptive regions scheduling. The
method using the Gi(t) function information is never worse than
the one which relies purely on the fi(t) function, and enables
solutions to be obtained for situations where Qi is lower than
some value of fi(t) as is shown in figures 15 to 18.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a refined model for calculation of the
preemption delay. The fi(t) function is subject to a major op-

timisation considering the WCET context. More information is
provided as well in the form of Gi(t) function which enables
the method to provide a solution in situations where the Qi

length is smaller than some fi(t) value. This was one of the
major drawbacks of the previous work presented in [1]. The final
contribution is the implementation of all the proposed methods
and the extraction of preemption delay estimations for real world
benchmarks. In this way we have shown that the proposed method
enables considerable savings on the pessimism of the preemption
delay estimation for floating non-preemptive region scheduling.
Data cache analysis will be the subject of future work.
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