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Abstract 

For decades now, thermal rise has been spotted as one of the major constraints of performance for high-end 
safety-critical processors. In this context, Dynamic Voltage and Frequency Scaling (DVFS) based solutions have 
proven to be effective to manage the chip temperature. In this paper, we consider the scheduling problem of non-
preemptive periodic tasks on a single-core processor with DVFS-enabled capabilities under thermal-aware design. 
We assume that the tasks are scheduled by following any Fixed-Task-Priority (FTP) scheduler such as the 
traditional Rate Monotonic (RM) and Deadline Monotonic (DM). Then, we propose a new scheduling scheme, 
referred to as NP-COIN, which makes it possible to control both the processor activity and the triggering of the 
cooling mechanism with as little impact on performance as possible. We provide a thorough theoretical analysis of 
our solution, in terms of average temperature gain and timing penalty, against the classical DVFS schedule. 
Finally, we validate our theoretical results and assess the performance of our solution through a real-world use-
case study from the avionics domain and through intensive simulations by using synthetic test cases. 
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ABSTRACT

For decades now, thermal rise has been spotted as one of the major

constraints of performance for high-end safety-critical processors.

In this context, Dynamic Voltage and Frequency Scaling (DVFS)

based solutions have proven to be effective to manage the chip

temperature. In this paper, we consider the scheduling problem

of non-preemptive periodic tasks on a single-core processor with

DVFS-enabled capabilities under thermal-aware design. We assume

that the tasks are scheduled by following any Fixed-Task-Priority

(FTP) scheduler such as the traditional Rate Monotonic (RM) and

Deadline Monotonic (DM). Then, we propose a new scheduling

scheme, referred to as NP-COIN, which makes it possible to control

both the processor activity and the triggering of the cooling mech-

anism with as little impact on performance as possible. We provide

a thorough theoretical analysis of our solution, in terms of average

temperature gain and timing penalty, against the classical DVFS

schedule. Finally, we validate our theoretical results and assess the

performance of our solution through a real-world use-case study

from the avionics domain and through intensive simulations by

using synthetic test cases.

CCS CONCEPTS

•Computer systems organization→ Real-time systems; •Hard-
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1 INTRODUCTION

Over the past few decades, thermal dissipation has become one of

the most challenging issues in the design of modern safety criti-

cal computing systems. As a consequence of this, the demand for

efficient thermal-aware techniques has gained momentum in the

real-time research community to become one of the primary factors

driving the growth of the microprocessor market. Indeed, excessive

processor activity during a long period of time may force the plat-

form to reach a high and undesirable thermal level, which in turn ex-

poses the system to a malfunctioning or even a stall. Consequently,

system designers not only have to grapple with timing constraints

for safety critical systems; a suitable thermal management solution

is also of utmost importance as it would help avoid hot spots and

keep the device temperature at acceptable levels. Among the most

promising solutions, scheduling mechanisms based on Dynamic

Voltage and Frequency Scaling (DVFS) principles [35, 36, 39, 40]

to reduce the power consumption and consequently the average

thermal dissipation of the underlying processor, have proven to

be viable, adaptive and efficient under different conditions. But, in

their original specifications, their reactive nature and lack of ther-

mal modeling make them unsuitable for providing predictability

and/or performance. In this paper, we circumvent this hurdle in a

rather elegant manner by proposing a novel scheduling scheme,

referred to as NP-COIN, which targets performance optimization

under thermal constraints. We consider a single processor plat-

form with inter-task DVFS-enabled capabilities and we assume the

periodic fixed priority non-preemptive constrained-deadline task

model for describing the recurring processes that occur in critical

real-time systems. Then, we simulate the execution of the tasks by

following NP-COIN within the feasibility interval [9, 23].

⊲ On considering an inter-task DVFS. Roughly speaking, DVFS

solutions can be grouped into two main categories:

(1) inter-task DVFS [3, 16, 33], where the processor speed is

settled at task-level, i.e., once a task is selected for execution,

the speed is not changed until it is preempted or completed;

and,

(2) intra-task DVFS [4, 20, 32], where the speed is adjusted at

run-time during the execution of the task.

Comparing the two categories, the latter usually requires some

degree of compiler support to insert power management points

into the application code and to explicitly call Operating System

services for speed reduction. The former category does not involve

such changes and thus are more practical.

⊲Onconsidering anon-preemptive scheme. In non-preemptive

scheduling, the processor is allocated to each task until it terminates.

The main drawback of these schedulers [14, 15] is that they can lead
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to large response times due to the introduction of additional block-

ing times caused by low priority tasks, so reducing schedulability.

On the positive side, they present several advantages w.r.t. their

preemptive counterpart. To name a few examples, non-preemptive

schemes: (1) offer a low scheduling overhead due to the lack of

preemption; (2) provide a high degree of predictability; (3) need

low computational resources for scheduling which may not be the

case with a preemptive scheme; (4) ensure program locality since

the data is fetched from the main memory and allocated in the

cache; and finally (5) by construction, naturally guarantee the ex-

clusive access to shared resources. For all these reasons and because

these schemes are widely used in real-word applications (e.g., in

the avionic domain), we opted for disabling preemption completely.

⊲Our contribution. This paper proposes a novel proactive thermal-

aware scheduler, referred to as NP-COIN, together with its associ-

ated schedulability analysis. The basic idea is to introduce cooling

periods only when it is compulsory to do so during run-time to keep

the processor temperature within specified parameters. NP-COIN

makes it possible to control both the processor activity and the

triggering of the cooling mechanism prior to executing the corre-

sponding workload with as little impact on performance as possi-

ble. To the best of our knowledge, this is the first contribution to

address the thermal-aware schedulability analysis problem of non-

preemptive real-time tasks on DVFS-enabled single-cores. Finally,

we validate our theoretical results and assess the performance of

our solution by using a Mission Control Computer (MCC) use-case

study from the avionics domain as well as intensive simulations

through synthetic test cases.

⊲ Paper organization. The remainder of the paper is organized as

follows. We present the adopted model of execution in Section 2. In

Section 3, we present the challenge and provide the reader with the

main intuition behind our proposed solution. Section 4 summarizes

the required state-of-the-art basics and preliminary results. Our

main contribution is reported in Section 6, where we specify our

thermal-aware scheduler NP-COIN in details. Section 7 reports

on the experiments conducted to validate our theoretical results

and Section 8 reviews existing related works. Finally, Section 9

concludes the paper and provides future research directions.

2 MODEL OF EXECUTION

2.1 Task, platform and scheduler models

We consider a set 𝜏
def
= {𝜏1, 𝜏2, . . . , 𝜏𝑛} of 𝑛 recurring indepen-

dent tasks to be executed on a single processor platform 𝜋 =

[𝑠1, 𝑠2, . . . , 𝑠𝑚], where 𝑠𝑝 (with 𝑝 ∈ [1,𝑚]) represent the 𝑚 ≥ 1

execution speed levels available on 𝜋 . We assume throughout this

paper that the smaller the index of a speed, the higher its value.

In other words, this means that 𝑠1 denotes the highest speed and

𝑠𝑚 the slowest speed available on 𝜋 . The tasks are scheduled by

following any non-preemptive Fixed-Task-Priority (FTP) scheduler1.

We assume that the smaller the index of a task, the higher its prior-

ity. Every 𝜏𝑖 ∈ 𝜏 is modeled by a constrained-deadline periodic task

characterized by a 4-tuple (𝑂𝑖 , 𝐶𝑖 , 𝐷𝑖 , 𝑇𝑖 ), where 𝑂𝑖 is the offset;

𝐶𝑖 is the worst-case execution time (WCET); 𝐷𝑖 ≤ 𝑇𝑖 is the relative

1Popular FTP schedulers include Rate Monotonic and Deadline Monotonic.

deadline; and finally 𝑇𝑖 is the exact inter-arrival time between two

consecutive releases of task 𝜏𝑖 . We call each release of a task a łjobž,

denoted by 𝜏𝑖,𝑘 , where 𝑘 = 1, . . . ,∞ is the job index. This means

that job 𝜏𝑖,𝑘 : (1) is released at time 𝑟𝑖,𝑘
def
= 𝑂𝑖 + (𝑘 − 1) ·𝑇𝑖 ; (2) has an

execution requirement of at most 𝐶𝑖 ; and finally (3) must complete

within [𝑟𝑖,𝑘 , 𝑑𝑖,𝑘 ], where 𝑑𝑖,𝑘
def
= 𝑟𝑖,𝑘 + 𝐷𝑖 . We recall that for FTP

schedulers, every job generated from a task inherits the priority

assigned to this task. We denote by łhp(𝜏𝑖 )ž (resp., łlp(𝜏𝑖 )ž) the

set of tasks with a higher (resp., a lower) priority than 𝜏𝑖 and by

łhep(𝜏𝑖 )ž (resp., łlep(𝜏𝑖 )ž) the set hp(𝜏𝑖 ) ∪ {𝜏𝑖 } (resp., lp(𝜏𝑖 ) ∪ {𝜏𝑖 }).

All the jobs generated from a task are executed at the same constant

speed. This means that for a given reference speed, say 𝑠 > 0 time

units per seconds, it takes at most 𝐶𝑖
𝑠 seconds to execute each job

of 𝜏𝑖 . By following this rule, a low speed yields a long execution

time, whereas a high speed yields a fast execution. Without any loss

of generality, we neglect the overhead associated to both switching

between speeds and gating the clock in this paper. As a matter of

fact, these overheads can be included in the 𝐶𝑖 for each task 𝜏𝑖 in

a non-preemptive execution environment. For the schedulability

analysis, we assume that each task always executes for its WCET.

This means that the proposed analysis will be conservative, and

will not be exact since even without considering the thermal as-

pect, the addressed problem is NP-hard in the strong sense. The

task-to-speed mapping strategy can use the criticality level of the

tasks. For example: łthe higher the criticality of a task, the higher

the speed at which it must be executedž. Obviously, sophisticated

strategies could be designed to address this specific point in order

to control the incurred switching time and related overhead costs

(from one speed to another and clock gating), but the actual task-

to-speed mapping problem is left out of the scope of this work, as

we assume that it is the responsibility of the system designer for a

given application. Because speed selection has a substantial impact

on thermal efficiency, our main objective in this paper is to design

a methodology to mitigate its effects at run-time.

2.2 Thermal model

The adopted thermal model uses an RC circuit similar to the one

described in [5], where: (𝑖) 𝑅 denotes a thermal resistance; (𝑖𝑖) 𝐶 a

thermal capacitance; (𝑖𝑖𝑖)𝑇𝐴 the ambient temperature2; (𝑖𝑣)𝑇 (𝑡) the

processor temperature at time 𝑡 > 0; and (𝑣) 𝑃 (𝑡) the heating phase

at time 𝑡 > 0. We assume that the processor may be in only one of

the following two possible states at any time instant: (1) active (i.e.,

heating) during which tasks may be executing at a specific speed

or (2) inactive (i.e., cooling) during which tasks are not allowed to

execute (see blue curve in Figure 1). For sake of readability, only 𝑠2
and 𝑠3 are reported along the y-axis to represent the corresponding

temperature 𝑎 · 𝑠𝛼𝑝 /𝑏, with 𝑝 = 2, 3, in all figures.

The heating phase can bemodeled by the current 𝑃 (𝑡)
def
= 𝑃𝐷 (𝑡)+

𝑃𝐿 (𝑡) passing through the thermal resistance 𝑅. Here, 𝑃𝐷 (𝑡)
def
=

𝛽0 · 𝑠
𝛼 represents the dynamic current; 𝑃𝐿 (𝑡)

def
= 𝛽1 · 𝑇 (𝑡) + 𝛽2

the leakage current; and 𝛼 , 𝛽0, 𝛽1 and 𝛽2 are processor specific

constants. The derivative of the system temperature w.r.t. time can

be calculated by solving the following linear differential equation.

2Here we assume the ambient temperature as constant.
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𝑇 ′(𝑡) +
𝑇 (𝑡) −𝑇𝐴

𝑅 ·𝐶
=

𝑃 (𝑡)

𝐶
(1)

In Equation 1, by setting 𝑇 (𝑡) to be 𝑇 (𝑡) −
𝑅 ·𝛽2−𝑇𝐴
𝑅 ·𝛽1−1

to shift 𝑇𝐴 to 0,

we obtain the following classical differential equation.

𝑇 ′(𝑡) + 𝑏 ·𝑇 (𝑡) = 𝑎 (2)

where, parameters 𝑎 and 𝑏 are defined as in Equation 3.

𝑎
def
=

𝛽0 · 𝑠
𝛼

𝐶
and 𝑏

def
=

1

𝑅 ·𝐶
−

𝛽1

𝐶
(3)

Since the processor speed may vary from the execution of one job

to another at run-time by assumption, it is important remark that

parameter ł𝑎ž is not constant over time, while parameter ł𝑏ž is. As a

matter of fact, 𝑎 = 𝑎0 · 𝑠
𝛼 , where 𝑎0

def
=

𝛽0
𝐶 is constant. Throughout

this paper, we consider 𝑎0 = 8; 𝑏 ≈ 0.228 and 𝛼 = 3. These values

are typical settings for a silicon chip [5, 34]. Hereafter,we drop the

index of constant ł𝑎0ž to avoid heavy notations and to make

the discussion clearer for the reader. We denote the temperature

during the heating and cooling phases as 𝑇ℎ (𝑡) and 𝑇𝑐 (𝑡).

Figure 1: Typical thermal behavior over time w.r.t. speeds.

⊲⊳ Heating Model: We assume that heating comes mainly from

the processor activity and the heating produced by the other com-

ponents has a negligible impact on the processor global thermal

behavior. Hence, the solution to Equation 2, describing the heating

function, is given by Equation 4.

𝑇ℎ𝑠 (𝑡) =
𝑎 · 𝑠𝛼

𝑏
+

(
𝑇 (𝑡0) −

𝑎 · 𝑠𝛼

𝑏

)
𝑒−𝑏 · (𝑡−𝑡0) (4)

In Equation 4: (1) ł𝑠ž is the reference execution speed, (2) ł𝑡0ž is

the time required to cool-down the processor from 𝑇max to 𝑇min;

and (3) 𝑇 (𝑡0) = 𝑇min (see Figure 1). In this figure, the heating

function is illustrated assuming three reference execution speeds,

namely: (𝑖) speed 𝑠1 (see the łredž curve); (𝑖𝑖) speed 𝑠2 (see the łgreenž

curves); and (𝑖𝑖𝑖) speed 𝑠3 (see the łpurplež curves). In Case (𝑖),

we assume that the asymptote (here,
𝑎 ·𝑠𝛼1
𝑏

) exceeds 𝑇max, whereas

this is not the case in Case (𝑖𝑖) and Case (𝑖𝑖𝑖). In the latter two

cases, it is worth mentioning the change of dynamism in the curve

representing the heating function over time. Indeed, while the

heating function always evolves towards its asymptote (i.e.,
𝑎 ·𝑠𝛼𝑝
𝑏

at

execution speed 𝑠𝑝 ), it appears that the curve shapes outward, i.e.,

it is concave, if the current temperature falls below this value. If the

current temperature is above the asymptotic value, then the curve

shapes inward, i.e., it is convex.

⊲⊳CoolingModel:During this phase, we assume that no workload

is allowed to be executed, so the processor remains inactive for cer-

tain period of time. This assumption is materialized by considering

𝑠 = 0 and hence Equation 5 holds to describe the cooling function.

𝑇𝑐 (𝑡) = 𝑇 (𝑡0) · 𝑒
−𝑏 · (𝑡−𝑡0) (5)

This function is illustrated in Figure 1 (see the blue curve). From this

figure and Equation 5, we have 𝑇max = 𝑇min · 𝑒
𝑏 ·𝑡0 , which implies

that 𝑡0 =
1
𝑏
· ln

(
𝑇max
𝑇min

)
. A summary of key parameters is provided

at the end of this paper (see Table 2).

3 CHALLENGE AND MAIN INTUITION
BEHIND THE PROPOSED SOLUTION

In the traditional real-time scheduling theory, the attention of sys-

tem designers is usually drawn to guaranteeing that all timing

constraints are met. A good share of contributions cover other as-

pects like the processor temperature [6, 11, 18, 24, 28]. However,

only a few falls in the scope of this work [1, 5, 25, 30]. In this sec-

tion, we take the thermal dimension into account and provide the

big-picture look at our proposed thermal-aware scheduling strategy

for single-core processors.

From a thermal view point, it is worth noticing that tasks exe-

cuted at a low speed dissipate less heat than those executed at a

higher speed in the same time window (see Figure 1). In Figure 2,

the processor operates at three different speeds 𝑠1, 𝑠2 and 𝑠3 (with

𝑠1 ≥ 𝑠2 ≥ 𝑠3) and a typical job execution sequence generated from

the task sequence T★ = ⟨𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5, 𝜏6, 𝜏7⟩ is illustrated under

the classical inter-task DVFS scheme. As it is obvious from the

plot, the platform temperature is always kept within the predefined

thermal boundaries, 𝑇min and 𝑇max. Here, tasks 𝜏1, 𝜏4 and 𝜏7 are

executed at speed 𝑠1 (see the łredž segments); tasks 𝜏3 and 𝜏5 are

executed at speed 𝑠2 (see the łgreenž segments); and finally tasks 𝜏2
and 𝜏6 are executed at speed 𝑠3 (see the łpurplež segments). It is

important to remark the change of dynamism (concave vs. convex)

in the execution of tasks 𝜏3 and 𝜏5 despite the fact that they are

executed at the same speed. While the completion of 𝜏3 contributes

to an increase in the processor temperature, it is the opposite for

task 𝜏5. This change is due to: (1) the thermal point from which

these tasks started their respective execution; and (2) the asymp-

totic value corresponding to the execution at speed 𝑠2 (see Figure 1).

Figure 2: Typical job execution sequence under DVFS.
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Now, considering the same task-set and attributes for each task,

the picture may change drastically if the job execution sequence is

different (see Figure 3).

Figure 3: Influence of the tasks’ execution sequence on the

thermal behavior.

In Figure 3, T★★ = ⟨𝜏1, 𝜏3, 𝜏4, 𝜏7, 𝜏2, 𝜏5, 𝜏6⟩ is the assumed exe-

cution sequence. This is illustrated by 𝜏𝑖 ← 𝜏 𝑗 , where task 𝜏 𝑗
updates 𝜏𝑖 . Here, we observe a violation of the maximum thermal

threshold 𝑇max, thus exposing the limitations of the classical inter-

task DVFS scheduler. This thermal violation is due to the execution

of tasks 𝜏4 and 𝜏7 in T★★. In order to get around this hurdle, actions

must be taken prior to the execution of these tasks since the adopted

scheduler is non-preemptive by assumption. This is precisely the

strategy promoted in the design of NP-COIN. Specifically, we intro-

duce a number of cooling windows denoted by [𝑐𝑤1; 𝑐𝑤2; 𝑐𝑤3; . . .]

during run-time prior to executing some specific workloads in order

to keep the processor temperature within𝑇min and𝑇max. These cool-

ing windows also define a sequence of execution windows referred

to as [𝑒𝑤1; 𝑒𝑤2; 𝑒𝑤3; . . .], wherein the processor is continuously

busy executing jobs, while meeting both the thermal and timing

constraints (see Figure 4). A similar approach was recently adopted

in the scope of multi-core platforms by using a slack distribution

policy [41], but the proposed solution was targeting only peak tem-

peratures, unfortunately. Our solution captures both the transient

and permanent temperatures at run-time.

Figure 4: Typical job execution sequence under NP-COIN.

Rodríguez and Yomsi [25] showed that it is beneficial from a

thermal viewpoint to trigger the cooling mechanism for several

short intervals than a long cooling interval at once. In this paper,

we acknowledge this result and build upon it. However, we adopt

such a strategy only when it is mandatory to do so in order not to

miss any thermal constraint and to keep the processor temperature

within 𝑇min and 𝑇max. As a matter of fact, each inserted cooling

window causes a timing penalty in the completion time of the

pending tasks. Put all together, the cumulative timing penalty may

render the entire system not schedulable.

4 PREREQUISITES AND PRELIMINARY
RESULTS

This section introduces a number of notations, basic properties

and provides key concepts and/or preliminary results for a smooth

understanding of the rest of this paper. Specifically, we recall the

concepts of level-i busy period; longest admissible execution time;

shifted heating function and shifted cooling function for a task 𝜏𝑖 ,

etc. They will constitute the backbone for the specification of our

NP-COIN scheduler.

Definition 4.1 (level-i busy period [19]). A level-i busy period is

a time interval [𝜎, 𝜇] within which only jobs belonging to hep(𝑖)

(except the first job, which is generated from task 𝜏 𝑗 ∈ lp(𝜏𝑖 ) with

the longest WCET) are executed throughout [𝜎, 𝜇], but no jobs

belonging to hep(𝑖) are executed in [𝜎 − 𝜖, 𝜎) or (𝜇, 𝜇 + 𝜖] for any

arbitrary small 𝜖 > 0.

From Definition 4.1, a level-i busy period may consist of several

consecutive execution and cooling windows and, in such a time

interval, there is no time instant at which a pending ready job is not

executed. In other words, the response time of every job 𝜏𝑖,𝑘 (with

𝑖 ∈ [1, 𝑛] and 𝑘 ≥ 1), i.e., the time elapsed between its release and

completion times, is part of a level-i busy period. As such, we will

need to identify the phasing of offsets 𝑂1,𝑂2, . . . ,𝑂𝑖 that creates

the level-i busy period wherein we find the longest response time

for each task 𝜏𝑖 . While this is a rather simple exercise when the

only considered metric is time, as in the classical non-preemptive

scheduling theory, the clear-blue sky becomes cloudy-gray when

thermal constraints are also taken into account. This is the case in

this paper and thus more care is required. Since tasks may be exe-

cuted at different speeds, the blocking term 𝐵𝑖 of any 𝜏𝑖 admissible

for execution on 𝜋 can be stated as in Lemma 4.2.

Lemma 4.2 (Blocking term 𝐵𝑖 ). Assuming that task 𝜏 𝑗 ∈ lp(𝜏𝑖 )

in Definition 4.1 is executed at speed 𝑠𝑝 𝑗 > 0 (with 𝑝 𝑗 ∈ [1,𝑚]),

then the blocking term 𝐵𝑖 for the execution of task 𝜏𝑖 is defined by

Equation 6.

𝐵𝑖 =




max
𝜏 𝑗 ∈lp(𝜏𝑖 )

{
𝐶 𝑗

𝑠𝑝 𝑗

}
; if 𝑖 ∈ [1, 𝑛 − 1]

0; otherwise

(6)

Considering that all tasks are executed at the same reference

speed 𝑠ref = 1 and the heating function 𝑇ℎ𝑠ref
(𝑡) crosses the maxi-

mum thermal threshold𝑇max, Rodríguez and Yomsi (see [25], Lemma 1)

showed that the longest admissible execution time (Δ𝐶ref ) for any

task on 𝜋 is given by Equation 7.

Δ𝐶ref = −
1

𝑏
· ln

(
𝑇max − 𝑎/𝑏

𝑇min − 𝑎/𝑏

)
(7)

Lemma 4.3 (Updated Δ𝐶). Assuming that the heating function

𝑇ℎ𝑠 (𝑡) at the maximum speed available on 𝜋 (here, 𝑠1) crosses the
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Figure 5: Shifted heating and cooling functions.

maximum thermal threshold𝑇max, then the longest admissible execu-

tion time for any task (i.e., the longest execution time of any task that

would not violate any thermal constraint) is given by Equation 8.

Δ𝐶
def
= −

𝑠1

𝑏
· ln

(
𝑇max − 𝑎 · 𝑠

𝛼
1 /𝑏

𝑇min − 𝑎 · 𝑠
𝛼
1 /𝑏

)
(8)

Proof. The proof is similar to the one in [25]. We will not repeat

it here due to space limitation. It is sufficient to note that Δ𝐶 is

normalized by using an execution at the maximum speed. □

Definition 4.4 (Speed categorization 𝑠high and 𝑠low). Let 𝑇 (𝑠𝑝 ) be

the maximum achievable temperature when processor 𝜋 executes

from 𝑇𝑚𝑖𝑛 at speed level 𝑝 (with 𝑝 ∈ [1,𝑚]). Then, we categorize 𝑝

as high if 𝑇 (𝑠𝑝 ) ≥ 𝑇𝑚𝑎𝑥 ; otherwise, we categorize 𝑝 as low. We

denote by 𝑠high (resp., 𝑠low) the set of all high (resp., low) speeds.

To illustrate Definition 4.4, we consider the thermal behaviors

in Figure 1, then 𝑠high = {𝑠1} and 𝑠low = {𝑠2, 𝑠3}. In the rest of this

paper, we assume that 𝜏𝑖 (with 𝑖 ∈ [1, 𝑛]) is always executed at

speed 𝑠𝑝𝑖 or simply ł𝑠𝑖 ž to keep the same index as the task.

Definition 4.5 (Shifted heating function (𝑇ℎ𝑠 (𝑡)) and Shifted cooling

function (𝑇𝑐 (𝑡))). Let 𝑇ℎ𝑠 (𝑡) and 𝑇𝑐 (𝑡) be the heating function and

the cooling function as defined in Equations 4 and 5, respectively.

Then, the shifted heating function𝑇ℎ𝑠 (𝑡) at distance 𝑑ℎ from𝑇ℎ𝑠 (𝑡)

and the shifted cooling function 𝑇𝑐 (𝑡) at distance 𝑑𝑐 from 𝑇𝑐 (𝑡) are

derived as follows.

𝑇ℎ𝑠 (𝑡)
def
=

𝑎 · 𝑠𝛼

𝑏
+

(
𝑇min −

𝑎 · 𝑠𝛼

𝑏

)
𝑒−𝑏 · (𝑡−𝑡0+𝑑ℎ) (9)

and

𝑇𝑐 (𝑡)
def
= 𝑇min · 𝑒

−𝑏 · (𝑡−𝑡0+𝑑𝑐 ) (10)

Assuming the thermal behaviors in Figure 1, the functions𝑇ℎ𝑠2
(𝑡)

at distance 𝑑ℎ and 𝑇𝑐 (𝑡) at distance 𝑑𝑐 are illustrated in Figure 5.

Points 𝐻 and 𝐴 are shifted to 𝐻
′
and 𝐴

′
.

Lemma 4.6 (Heating function of a seqence𝑊ℎ𝑠ℓ
(𝑡)). Let

Tℓ = ⟨𝜏1, 𝜏2, . . . , 𝜏ℓ ⟩ (with ℓ ≥ 1) denote an already re-indexed job

execution sequence from time instant 𝑡0 on platform 𝜋 (see for example

Figure 2). Then, the heating function governing the execution of task 𝜏ℓ
is given by Equation 11.

𝑊ℎ𝑠ℓ
(𝑡 )

def
=

𝑎 · 𝑠𝛼ℓ
𝑏
+ 𝑒−𝑏 · (𝑡−𝑡0 )

{
𝑇min −

𝑎

𝑏

(
𝑠𝛼1 − Λℓ−1

)}
(11)

where, parameter Λ𝜑 (with 𝜑 ≥ 0) is given by Equation 12.

Λ𝜑
def
=




𝜑∑
𝑝=1


(
𝑠𝛼𝑝 − 𝑠

𝛼
𝑝+1

)
𝑒
𝑏 ·

(∑𝑝
𝛾=1

𝐶𝛾
𝑠𝛾

) 
; if 𝜑 ≥ 1

0; Otherwise

(12)

Proof. (By induction on ℓ)

Base step ℓ = 1: The job execution sequence is T1 = ⟨𝜏1⟩ and we

have:

𝑊ℎ𝑠1
(𝑡) = 𝑇ℎ𝑠1

(𝑡); i.e., the heating function for 𝜏1

=

𝑎 · 𝑠𝛼1
𝑏
+ 𝑒−𝑏 · (𝑡−𝑡0)

(
𝑇min −

𝑎

𝑏
· 𝑠𝛼1

)

=

𝑎 · 𝑠𝛼1
𝑏
+ 𝑒−𝑏 · (𝑡−𝑡0)

(
𝑇min −

𝑎

𝑏
· (𝑠𝛼1 − Λ0)

)
So the lemma holds when ℓ = 1.

Inductive hypothesis: Suppose the lemma holds for all ℓ up to

some 𝑞 ≥ 1.

Inductive step: Let ℓ = 𝑞 + 1. Then T𝑞+1 = ⟨𝜏1, . . . , 𝜏𝑞, 𝜏𝑞+1⟩ and

we have:

𝑊ℎ𝑠𝑞+1
(𝑡) = 𝑇ℎ𝑠𝑞+1

(𝑡); by Definition 4.5, where 𝑑ℎ is unknown.

=

𝑎 · 𝑠𝛼𝑞+1

𝑏
+

(
𝑇min −

𝑎 · 𝑠𝛼𝑞+1

𝑏

)
𝑒−𝑏 · (𝑡−𝑡0+𝑑ℎ)

=

𝑎 · 𝑠𝛼𝑞+1

𝑏
+ 𝑒−𝑏 · (𝑡−𝑡0)

(
𝑇min −

𝑎 · 𝑠𝛼𝑞+1

𝑏

)
𝑒−𝑏 ·𝑑ℎ (13)

Since the tasks are executed in non-preemptively and 𝜏1 is exe-

cuted from 𝑡0, then the completion time of T𝑞 = ⟨𝜏1, 𝜏2, . . . , 𝜏𝑞⟩ is

given by 𝜁
def
= 𝑡0 +

∑𝑞
𝛾=1

𝐶𝛾

𝑠𝛾
. By using the previous equality (LHS

of Equation 14) and the induction hypothesis (RHS of Equation 14)

upon the completion of 𝜏𝑞 (at time instant 𝜁 ) we have:

𝑎 ·𝑠𝛼𝑞+1
𝑏
+ 𝑒−𝑏 · (𝜁−𝑡0)

(
𝑇min −

𝑎 ·𝑠𝛼𝑞+1
𝑏

)
𝑒−𝑏 ·𝑑ℎ =

𝑎 ·𝑠𝛼𝑞
𝑏
+ 𝑒−𝑏 · (𝜁−𝑡0)

{
𝑇min −

𝑎
𝑏

(
𝑠𝛼1 − Λ𝑞−1

)}
(14)

i.e.,
𝑎 ·𝑠𝛼𝑞+1

𝑏
+ 𝑒
−𝑏 ·

(∑𝑞
𝛾=1

𝐶𝛾
𝑠𝛾

) (
𝑇min −

𝑎 ·𝑠𝛼𝑞+1
𝑏

)
𝑒−𝑏 ·𝑑ℎ =

𝑎 ·𝑠𝛼𝑞
𝑏
+ 𝑒
−𝑏 ·

(∑𝑞
𝛾=1

𝐶𝛾
𝑠𝛾

) {
𝑇min −

𝑎
𝑏

(
𝑠𝛼1 − Λ𝑞−1

)}

i.e., 𝑒
−𝑏 ·

(∑𝑞
𝛾=1

𝐶𝛾
𝑠𝛾

) (
𝑇min −

𝑎 ·𝑠𝛼𝑞+1
𝑏

)
𝑒−𝑏 ·𝑑ℎ =

𝑎
𝑏

(
𝑠𝛼𝑞 − 𝑠

𝛼
𝑞+1

)
+ 𝑒
−𝑏 ·

(∑𝑞
𝛾=1

𝐶𝛾
𝑠𝛾

) {
𝑇min −

𝑎
𝑏
·
(
𝑠𝛼1 − Λ𝑞−1

)}

i.e.,

(
𝑇min −

𝑎 ·𝑠𝛼𝑞+1
𝑏

)
𝑒−𝑏 ·𝑑ℎ =

𝑎
𝑏

(
𝑠𝛼𝑞 −𝑠

𝛼
𝑞+1

)
+𝑒
−𝑏 ·

(∑𝑞
𝛾=1

𝐶𝛾
𝑠𝛾

)
{𝑇min−

𝑎
𝑏 (𝑠

𝛼
1 −Λ𝑞−1)}

𝑒
−𝑏 ·

(∑𝑞
𝛾=1

𝐶𝛾
𝑠𝛾

)
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i.e.,

(
𝑇min −

𝑎 ·𝑠𝛼𝑞+1
𝑏

)
𝑒−𝑏 ·𝑑ℎ =

𝑎
𝑏

(
𝑠𝛼𝑞 − 𝑠

𝛼
𝑞+1

)
𝑒
𝑏 ·

(∑𝑞
𝛾=1

𝐶𝛾
𝑠𝛾

)
+

{
𝑇min −

𝑎
𝑏

(
𝑠𝛼1 − Λ𝑞−1

)}

By substituting this last equality in Equation 13, we obtain:

𝑊ℎ𝑠𝑞+1
(𝑡 ) =

𝑎 · 𝑠𝛼
𝑞+1

𝑏
+ 𝑒−𝑏 · (𝑡−𝑡0 )



𝑎

𝑏

(
𝑠𝛼𝑞 − 𝑠

𝛼
𝑞+1

)
𝑒
𝑏 ·

(∑𝑞
𝛾=1

𝐶𝛾
𝑠𝛾

)
+

[
𝑇min −

𝑎

𝑏

(
𝑠𝛼1 − Λ𝑞−1

)]


=

𝑎 · 𝑠𝛼
𝑞+1

𝑏
+ 𝑒−𝑏 · (𝑡−𝑡0 )



𝑇min −

𝑎

𝑏


𝑠𝛼1 −

©­­­«
Λ𝑞−1 +

(
𝑠𝛼𝑞 − 𝑠

𝛼
𝑞+1

)
𝑒
𝑏 ·

(∑𝑞
𝛾=1

𝐶𝛾
𝑠𝛾

) ª®®®¬






=

𝑎 · 𝑠𝛼
𝑞+1

𝑏
+ 𝑒−𝑏 · (𝑡−𝑡0 )

{
𝑇min −

𝑎

𝑏

(
𝑠𝛼1 − Λ𝑞

)}

and the lemma follows. □

Upon the completion of a job execution sequence, say Tℓ =

⟨𝜏1, . . . , 𝜏ℓ ⟩, if the ready queue is not empty, then it could be the case

that the execution of the next task, say 𝜏ℓ+1, requires the processor

to cool-down for some time period, say 𝑥ℓ+1 > 0, in order not to

miss its thermal constraint (see for example Figure 4). When this is

the case, the insertion of the cooling windows is mandatory and

it defines successive execution windows. The computation of 𝑥ℓ+1
depends on the processor characteristics and (1) the thermal point

reached after the previous execution window (on the left) before

𝜏ℓ+1 is executed; and (2) the length of the execution requirement

of 𝜏ℓ+1 (on the right) in order not to miss its thermal constraint.

To this end, we consider a łfake taskž, say 𝜏 fakeℓ , with an execution

requirement𝐶fake
ℓ that would allow the processor to reach the same

thermal point as Tℓ = ⟨𝜏1, . . . , 𝜏ℓ ⟩ when executed in isolation, i.e.,

from 𝑇min without interference from any other task (see the red-

dashes in Figure 6). We assume that 𝜏 fakeℓ executes at 𝑠fakeℓ ∈ 𝑠high.

Figure 6: Cooling phase computation

By using the same intuitive idea as [25], Corollary 2, we compute

𝑥ℓ+1 in such a manner that the temperature of the processor is ex-

actly𝑇max upon the completion of 𝜏ℓ+1. This is meant to reduce the

length of the cooling period as much as possible. In addition, this ap-

proach induces the minimum timing penalty on the responsiveness

of 𝜏ℓ+1. Formally, 𝑥ℓ+1 is defined as in Equation 15.

𝑥ℓ+1
def
=

1

𝑏
· ln


𝑇min +

𝑎·𝑠fakeℓ
𝑏 · (𝑒

𝑏 ·
𝐶fake
ℓ

𝑠fake
ℓ − 1)

𝑇max +
𝑎·𝑠ℓ+1

𝑏 · (𝑒
−𝑏 ·

𝐶ℓ+1
𝑠ℓ+1 − 1)


−

(
𝐶 fake
ℓ

𝑠 fakeℓ

+
𝐶ℓ+1

𝑠ℓ+1

)
(15)

5 KEY PROPERTIES AND OBSERVATIONS

As mentioned in Section 2, the schedulability analysis is conducted

by assuming that each task always executes for its WCET.

Lemma 5.1 (Longest thermal-aware level-𝑖 busy window).

The scenario that generates the longest thermal-aware level-𝑖 busy

window for any task 𝜏𝑖 occurs when the following three conditions

are satisfied:

(1) Tasks 𝜏1, 𝜏2, . . . , 𝜏𝑖 release a job at the same time instant (say,

at time 0);

(2) Task 𝜏𝑘 ∈ lp(𝜏𝑖 ) with the maximum
𝐶𝑘
𝑠𝑘

releases a job at an

arbitrary small 𝜖 > 0 time units before 𝜏𝑖 (this factor helps in

computing the traditional blocking term 𝐵𝑖 ). If several tasks in

𝜏𝑘 ∈ lp(𝜏𝑖 ) lead to the same ratio maximum
𝐶𝑘
𝑠𝑘

, then the tie

is broken by selecting the task which terminates at the highest

thermal level between 𝑇min and 𝑇max.

(3) The initial temperature 𝑇init ∈ [𝑇min,𝑇max] of the processor

at time 0 is at a level that requires the insertion of a cooling

window upon the completion of 𝐵𝑖 for the execution of the next

task in order not to violate the thermal constraint. Specifically,

these situations are captured in Figure 7.

(a) 𝑇init = 𝑇min . (b) 𝑇init ∈ ]𝑇min,𝑇max [. (c) 𝑇init = 𝑇max .

Figure 7: Longest level-𝑖 busy window.

The main intuition behind Lemma 5.1 is as follows. The worst-

case thermal-aware scenario for every task 𝜏𝑖 occurs whenever it

is requested simultaneously with requests of all higher priority

tasks and the thermal level is as close as possible to 𝑇max upon the

execution of the blocking term 𝐵𝑖 .

Lemma 5.2 (Worst-case thermal-aware response time 𝑅TA𝑖 ).

The worst-case thermal-aware response time 𝑅TA𝑖 for any task 𝜏𝑖 ∈ 𝜏

occurs in the longest level-𝑖 busy window as specified in Lemma 5.1.

Lemma 5.2 is inspired directly from the well-established result in

the classical real-time scheduling theory for non-preemptive tasks.

Consequently, we will skip the proof in this paper. The worst-case

thermal-aware response time 𝑅TA𝑖 for any task 𝜏𝑖 ∈ 𝜏 will thus be

computed by scrutinizing all its jobs in the longest thermal-aware

level-𝑖 busy window and by extracting themaximum thermal-aware

response times. If 𝑅TA𝑖 ≤ 𝐷𝑖 , then 𝜏𝑖 is schedulable. Otherwise, 𝜏𝑖 is

not schedulable and so is the entire system. Note that 𝑅TA𝑖 is always

greater than or equal to the traditional worst-case response time

𝑅𝑖 of 𝜏𝑖 , when thermal constraints are ignored.
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6 NP-COIN SCHEDULER

Our thermal-aware scheduler NP-COIN behaves like the classical

DVFS unless the predefined thermal boundaries are about to be

violated. In a nutshell, it is a proactive scheduler that computes

the length of each cooling phase, say 𝑥★, prior to the execution of

the corresponding task, say 𝜏★, during the next heating phase (see

Section 4, Equation 15). However, what happens during the cooling

period may be a łgame changerž for the next task to be executed

since the processor is inactive in this window. Indeed, another task,

say 𝜏★★, may release a new job, which requires an update of the

ready queue and changes the horizon of the schedule (see Figure 8).

Figure 8: Releases during the cooling under NP-COIN.

In this figure, 𝜏2 releases a new job during the cooling window

and the original schedule (see the dash-lines) is modified from

that point onward (see the solid lines). Consequently, we must

distinguish the three cases (see Figure 9) to compute the actual

length, say 𝑥 , of the cooling phase.

6.1 On the computation of łxž

⊲ Case 1 (Figure 9(a)): No task or an LP-task (here 𝜏★★) re-

leases a job. Here, Equation 16 returns the value of ł𝑥ž.

𝑥
def
=

1

𝑏
· ln


𝑇min +

𝑎·𝑠𝛼1
𝑏 · (𝑒

𝑏 ·
𝐶1
𝑠1 − 1)

𝑇max +
𝑎·𝑠𝛼2
𝑏 · (𝑒

−𝑏 ·
𝐶2
𝑠2 − 1)


−

(
𝐶1

𝑠1
+
𝐶2

𝑠2

)
(16)

⊲ Case 2 (Figure 9(b)): An HP-task (here 𝜏★) releases a job,

say at time 𝑟★, and the cooling length is sufficient. Here, 𝑟★ is

reached after the computation of 𝑥★ (e.g., Point 𝐶) and 𝜏★ becomes

active. Equation 17 returns the value of ł𝑥ž.

𝑥
def
=

1

𝑏
· ln


𝑇min +

𝑎·𝑠𝛼1
𝑏 · (𝑒

𝑏 ·
𝐶1
𝑠1 − 1)

𝑇max +
𝑎·𝑠𝛼

★

𝑏 · (𝑒
−𝑏 ·

𝐶★

𝑠★ − 1)


−

(
𝐶1

𝑠1
+
𝐶★

𝑠★

)
(17)

⊲ Case 3 (Figure 9(c)): An HP-task (here 𝜏★) releases a job, say

at time 𝑟★, but the cooling length is not sufficient. Here, 𝑟★
is not reached after the computation of 𝑥★ (e.g., Point 𝐸) and 𝜏★
remains inactive. We enforce an additional cooling period (from

Point 𝐸 to 𝐹 ) in order to avoid a priority inversion. Equation 18

returns the value of ł𝑥ž, where 𝑡crt is the current absolute time

instant in the schedule.

𝑥
def
= 𝑟★ − 𝑡crt (18)

(a) No task or an LP-task
is released during the cool-
ing period.

(b) An HP-task is released
and the cooling length is
sufficient.

(c) An HP-task is released,
but the cooling length is
unsufficient.

Figure 9: Support for the computation of the cooling lengths.

7 EXPERIMENTAL RESULTS

We consider a single-core from an ARM-Cortex-A53 processor in

Raspberry Pi 3 and set 𝑇max = 55◦𝐶 and 𝑇min = 10◦𝐶 to picture

the conditions at high altitudes. The temperature of the standard

atmosphere is smaller than or equal to 9.1◦𝐶 starting from 3.000

feet upwards in the avionics domain (see [10], Chapter 4). Then,

we consider: 𝑎0 = 8, 𝑏 = 0.228 and 𝛼 = 3 [34]. We assume three

operational speeds [0.8; 1.0; 1.2] (in GHz). The utilization for task 𝜏𝑖

is given by𝑢𝑖
def
= 𝐶𝑖/(𝑇𝑖 ·𝑠𝑖 ) and the tasks are scheduled by following

the traditional Deadline Monotonic scheduler. From these inputs,

Δ𝐶 = 11.5588 and 𝑡0 = 7.4769. In order to prove the usability of our

algorithm, we apply the proposed methodology to the following

two contexts:

(𝑎) a real-world MCC use-case from the avionics domain;

(𝑏) a high number of generated synthetic test cases.

⊲ Evaluation metrics: We compare the performance of three

schedulers: (1) DVFS, where time is the only evaluation metric

and thermal constraints are ignored; (2) thermal-DVFS, where a

task-set is not schedulable as soon as any task violates a thermal

boundary; and finally (3) NP-COIN, where both thermal and timing

constraints are taken into account. By following these definitions, it

worth noticing that the timing and thermal behaviors of a task-set

are similar under DVFS and thermal-DVFS. However, a task-set can

be deemed schedulable under DVFS (this is the case when all the

timing requirements are met), but unschedulable under thermal-

DVFS (this is the case as soon as any thermal boundary is violated).

Note that, the reverse is not true.

Despite the fact that DVFS and thermal-DVFS are intrinsically

naive schedulers per se, it is worth noticing that they define the

envelope of the solution space when both timing and thermal con-

straints are taken into account. Therefore, the closer the behavior

of our NP-COIN solution is to DVFS, the more efficient it is. On the

contrary, the closer our NP-COIN solution is to thermal-DVFS the

poorer is its design.

7.1 Application to a real-world MCC use-case.

The adopted real-world use-case is characterized by a set of sensors

and actuators (e.g., weapons, mission control devices, communica-

tion devices, etc.) interconnected on a data bus (e.g., MIL-STD-1553B).

The timing requirements are written by personnel from IBM’s Fed-

eral Sector Division, the Naval Weapons Center, and the Software

Engineering Institute and are replicated here for sake of complete-

ness (see Table 1). A detailed description of the use-case can be
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found in [22, 27]. In a nutshell, the software integrates different

subsystems to ensure that the aircraft is able to complete a mission

and these subsystems are given with the following interpretation.

• Display: updates the screen information.

• Radar Warning Receiver : provides threat information.

• Radar Control: returns target position.

• Navigation: computes aircraft position, attitude, and rates.

• Tracking: updates target information.

• Weapon Control: updates weapon ballistics.

• Built-in-Test: determines equipment status.

• Data Bus: performs communication between MCC and de-

vices external to the MCC.

From this description, we perform the task-to-speed mapping based

on educated guesses to have all the parameters for the experiment

and we assume the following classification without any loss of

generality (see Table 1).

(1) The łRadarWarning Receiver (RWR)ž, łRadar Control (Radar)ž

and łNavigation (NAV)ž are high-criticality tasks, which

must be executed at speed 𝑠1 = 1.2 ;

(2) The łDisplayž and łTrackingž are medium-criticality tasks,

which must be executed at speed 𝑠2 = 1.0;

(3) Finally, the remaining systems (here łWeaponž, łBuilt-in-

Testž (BIT) and łData Busž) are low-criticality tasks, which

must be executed at speed 𝑠3 = 0.8.

Note that other classifications are possible and would not have any

impact on the applied methodology by any mean.

Table 1: MCC timing requirements

System Subsystem 𝐶𝑖 𝐷𝑖 = 𝑇𝑖 𝑠𝑖 𝑢𝑖 (%)

Display Status Update 3 200 1.0 1.500

Keyset 1 200 1.0 0.500

Hook Update 2 80 1.0 2.500

Graphic Display 9 80 1.0 11.250

Stores Update 1 200 1.0 0.500

RWR Contact Mgmt. 5 25 1.2 16.666

Radar Target Update 5 50 1.2 8.333

Tracking Filter 2 25 1.2 6.666

NAV Nav Update 8 59 1.2 11.300

Steering Cmds. 3 200 1.2 1.250

Nav Status 1 1000 1.2 0.080

Tracking Target Update 5 100 1.0 5.000

Weapon Weapon Protocol 1 200 0.8 0.625

Weapon Release 3 200 0.8 1.875

Weapon Aim 3 50 0.8 7.500

BIT Equ. Status Update 1 1000 0.8 0.125

Data Bus Poll Bus Devices 1 40 0.8 3.125

System utilization 78.795

Figure 10 illustrates the execution sequence corresponding to the

lowest priority task (here, BIT) by following the three schedulers ś

for DVFS and thermal-DVFS (see the dash execution sequence) and

for NP-COIN (see the plain execution sequence) ś and assuming the

released scenario described in Lemma 5.1, i.e., the scenario leading

to the longest busy period.

Figure 10: MCC (DVFS vs. NP-COIN) execution.

⊲ Interpretation of the results: In Figure 10, we observe that the

system is łschedulablež by following both NP-COIN and DVFS;

whereas it is łnot schedulablež under Thermal-DVFS, unfortunately.

In the latter case, the thermal threshold 𝑇max has been violated

four times (see the red dots) during the execution of the tasks.

We recall that DVFS follows the exact same behavior as Thermal-

DVFS, but ignores all thermal constraints. The NP-COIN scheduler,

in contrast, allows us to circumvent this hurdle by introducing a

number of cooling periods (see the blue curves) in the resulting

schedule before the execution of some workloads. Nonetheless,

this procedure incurs some timing penalty in the responsiveness

of the task under analysis. The completion time of the BIT task

under DVFS is 97.83 time units, whereas it is 137.08 time units

under NP-COIN. This means a timing penalty of 28.63%. From a

thermal viewpoint, the average temperature under DVFS (i.e., the

surface below the curve defined by the execution sequence until the

execution of the BIT task) is 45.43◦𝐶; whereas it is 43.95◦𝐶 under

NP-COIN. This means an average temperature drop of 3.25%, which

corroborates the intended behavior in the design of this scheduler.

7.2 Application to synthetic test cases.

In this context, we generate 20, 000 synthetic periodic constrained-

deadline task-sets, uniformly distributed (1000 per system utiliza-

tion) from 0.1 to 1, with a step of 0.05. We generate each task

parameters as follows: (1) the execution times 𝐶𝑖 are uniformly

distributed within [Δ𝐶/2;Δ𝐶]; (2) the periods 𝑇𝑖 ∈ [30; 900] are

generated by using the hyper-period limitation technique proposed

in [12, 23]; and (3) the deadlines 𝐷𝑖 are randomly generated within

[0, 8 ·𝑇𝑖 ;𝑇𝑖 ]. The task-to-speed mapping is assumed to be random.

We recall that the actual task-to-speed mapping problem is left out

of the scope of this work, as it is assumed to be the responsibility of

the system designer. It is worthmentioning that while some systems

can continue to be operational when speed and voltage is chang-

ing3 [13, 26], other systems stop during steep changes. Figure 11

illustrates the schedulability ratio for the three schedulers.

⊲ Interpretation of the results: In Figure 11, we observe that

Thermal-DVFS performs poorly even at low system utilization (at

most 54.7% of the generated task-sets are schedulable) and the

schedulability degrades as the system utilization increases. Con-

versely, NP-COIN performs very well in general. Its efficiency is

illustrated by its close-knit relationship with DVFS. Until 80% of

3The frequency continues to vary during the transition period.
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Figure 11: Schedulability ratio.

system utilization, at least 93.9% of the generated task-sets are

schedulable vs. 97.4% for DVFS. This means a performance loss of

only 3.5% against a scheduler that ignores all thermal constraints.

This loss increases to 13.5% at 85%, to 29.6% at 90% and to 52.3%

at 95% of system utilization. This trend is explained by the fact that

there are lesser and lesser idle times left in the schedule to trigger

any cooling. On another front, it is worth mentioning the huge gap

between Thermal-DVFS and NP-COIN. This represents the task-

sets ratio dragged from being not schedulable to schedulable by

following the NP-COIN strategy. This gap reaches 83.1% at 80% of

system utilization.

From a timing perspective, Figure 12 compares the (Minimum -

Average - Maximum) worst-case response time for the lowest prior-

ity task under DVFS andNP-COIN.We notice amaximum deviation

of (9.22% - 10.02% - 36.88%) in terms of timing penalty of NP-COIN

against DVFS; whereas the minimum deviation is consistently kept

at zero.

From a thermal standpoint, Figure 13 compares the (Minimum -

Average - Maximum) temperature deviation for the lowest priority

task under DVFS and NP-COIN. Here, we notice a maximum de-

viation of (0.00◦𝐶 - 1.23◦𝐶 - 11.24◦𝐶) in terms of thermal gain for

NP-COIN over DVFS. We recall that the objective of NP-COIN is

not to reduce the average temperature, but to guarantee that both

the timing and thermal requirements are met for all tasks.

8 STATE OF THE ART

This section gives a brief overview on the existing works dealing

with thermal-aware scheduling techniques upon single processor

platforms. The list of presented contributions is by nomeans exhaus-

tive, but is representative. Our thermal-aware scheduler (NP-COIN)

intends to merge the most attractive properties of clock-gating and

DVFS-based schedulers.

On clock-gating based techniques: Thermal-aware real-time

systems have actively been addressed by the research community.

Nonetheless, only a handful of contributions addresses clock-gating

based schedulers. Along these lines, Chandarli et al. [5] adapted

energy harvesting techniques [1] to thermal-aware ones and pro-

posed worst-case response-time upper bounds for fully preemptive

priority-ordered sporadic and independent tasks. However, they did

so for classical non-concrete real-time task-sets. Ahmed et al. [2]

proposed an alternative solution to the same problem. They estab-

lished a necessary and sufficient condition for the thermal feasibility

of periodic task-sets. Recently, Rodríguez and Yomsi [25] developed

two schedulers that maintain the processor temperature within

two thermal thresholds for non-preemptive tasks: (𝑖) a reactive

scheduler that cools-down the processor as much as possible in

order to avoid high temperatures; and (𝑖𝑖) a proactive scheduler that

cools-down the processor just for the needed amount to execute

the pending workload. However, they did so only for non-DVFS-

enabled platforms.

On DVFS-based techniques: Most of the contributions in this

direction in the literature are reactive and rely on scaling-down the

processor speed (through a combination of voltage and frequency

scaling) to reduce its power consumption, and thereby its tempera-

ture [7, 8, 29ś31, 37, 38]. Here, actions are taken only when temper-

ature gets above a certain threshold and/or below through requests

issued by task/scheduler. By using such an approach, Chantem et

al. [7] determine the speed that maximizes the workload completed

under a maximum temperature constraint. They propose an optimal

DVFS control policy with two speed levels, but with non-negligible

transition overheads. Chen et al. [8] explored thermal-constrained

speed scheduling, but they did so for a set of frame-based real-

time tasks, i.e., with the same period. They developed a proactive

speed scheduling by utilizing dynamic voltage/speed scaling (DVS).

Quan et al. [29] derived thermal feasibility checks and formulated

constructive speed scheduling algorithms for periodic tasks under

thermal constraints. Shaik and Baskiyar [31] propose a proactive

software-based thermal aware scheduler, referred to as Simple Time

Derivative (STD), which uses the time derivative of the core tem-

perature as a predictor to lower its temperature and its temperature

fluctuations. The approach requires to identify the so-called łhotž

tasks [17, 21], which will be put to sleep for a short duration, if

the time derivative goes above an empirically defined threshold.

However, the metrics used in this procedure may not be accurate

and can be questionable, unfortunately. Wang et al. [37] placed

an emphasis on processors with discrete speed levels. Here, the

processor runs at the highest speed until the threshold temperature

is reached and then the equilibrium speed is used to keep the tem-

perature just below its constraint. Unfortunately, the equilibrium

speed might not always be available.

9 CONCLUSION AND FUTUREWORK

This paper considered the thermal-aware schedulability analysis

of non-preemptive real-time tasks on a single processor platform.

We captured both the thermal and timing behaviors of the system

in the same framework by proposing a novel proactive scheduler,

called NP-COIN, together with its associated schedulability analysis.

Our solution captured not only the peak temperatures but also,

the transient temperatures at run-time. We validated the run-time

behavior of our solution through a real-world Mission Control

Computer use-case from the avionics domain as well as through

intensive simulations by using the typical thermal specifications of

a single-core from an ARM-Cortex-A53 processor.
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(a) Minimum. (b) Average. (c) Maximum.

Figure 12: [Minimum - Average - Maximum] Worst-case response time of the lowest priority task.

(a) Minimum. (b) Average. (c) Maximum.

Figure 13: [Minimum - Average - Maximum] Temperature of the lowest priority task.

Table 2: Summary of key parameters

Parameter Description

𝜏 Set of tasks

𝜋 Platform with the set of operating speeds

𝑇𝐴 Ambient temperature

𝑇min Minimum thermal threshold

𝑇max Maximum thermal threshold

𝑃𝐷 (𝑡) Dynamic current

𝑃𝐿 (𝑡) Leakage current

𝑎, 𝑏, 𝛼 Hardware dependent parameters

𝑠 Operating speed

𝑡0 Time to cool-down from 𝑇max to 𝑇min

𝑇ℎ𝑠 (𝑡) Heating function

𝑇𝑐 (𝑡) Cooling function

𝐵𝑖 Blocking term

Δ𝐶 Longest admissible execution time

𝑇ℎ𝑠 (𝑡) Shifted heating function

𝑇𝑐 (𝑡) Shifted cooling function

𝑊ℎ𝑠ℓ
(𝑡) Heating function of a sequence

𝑥ℓ Cooling time required for the execution of 𝜏ℓ
𝑅TA𝑖 Worst case thermal-aware response time

As future work, there is a substantial number of interesting

problems lying ahead of us. However, we plan to start by tackling

the following ones, given in a chronological order:

(𝑖) Running experiments: perform experiments on real plat-

forms to expose the differences due to model abstraction of

our approach;

(𝑖𝑖) Multi-core problem: address the multi-core problem under

thermal-aware design by assuming a fully partitioned and/or

a semi-global scheduler; and

(𝑖𝑖𝑖) Mapping problem: explore and assess the performance

of various 2-phase mapping strategies, namely: task-to-core

mapping and task-to-speed mapping on each individual core

for an optimization of the overall heat dissipated at run-time.
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