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UNIVERSITY OF MINHO 

ABSTRACT 

A FRAMEWORK FOR THE TIMING ANALYSIS OF 
ETHERNET-BASED FACTORY-FLOOR NETWORKS 

by Nuno Alexandre Magalhães Pereira 

Throughout the years, researchers have developed and applied a considerable range of 
theory to the validation of factory-floor distributed real-time systems. Nowadays, some of 
those systems are based on Ethernet technologies. In fact, a number of characteristics are 
boosting the eagerness of extending Ethernet to also cover factory-floor distributed real-
time applications. Full-duplex links, non-blocking and priority-based switching, bandwidth 
availability, just to mention a few, are characteristics upon which that eagerness is building 
up. 

In the past few years, it is particularly significant the considerable amount of work that 
has been devoted to the timing analysis of Ethernet-based technologies. It happens, 
however, that the majority of those works are restricted to the analysis of subsets of the 
overall computing and communication system, thus without addressing the system as a 
whole. In fact, Ethernet technology, by itself, does not include features above the lower 
layers of the communication stack. Where are the higher layers that permit building real 
industrial applications? And, taking for free that they are available, what is the impact of 
those protocols, mechanisms and application models on the overall performance of 
Ethernet-based distributed factory-floor applications? This dissertation attempts to pave the 
way towards providing some reasonable answers to these issues. 

To this end, a few analysis approaches are explored with the purpose of setting a 
framework for developing tools suitable to extract temporal properties of Commercial-Off-
The-Shelf (COTS), Ethernet-based factory-floor communication systems. The particular 
case of Ethernet/IP is taken into the research work. 

Two models, enabling finding end-to-end response times in Ethernet/IP based 
distributed systems are provided. The first model is an analytical model, built upon 
traditional real-time response time analysis, considering a number of worst-case 
assumptions to derive the end-to-end response time bounds. The second model is a discrete-
event simulation model, providing an adequate solution to understand and analyse the 
timing behaviour of actual systems, also facilitating approaches for timeliness evaluation 
based on probabilistic measures of meeting deadlines. This may become relevant since 
modern factory-floor systems tend to be more flexible and adaptive in their nature. 
Additionally, results from applying both models are presented, and a discussion of the two 
is provided.  
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UNIVERSIDADE DO MINHO 

RESUMO 

ABORDAGENS À ANÁLISE TEMPORAL DE REDES BASEADAS 
EM ETHERNET PARA AMBIENTES INDUSTRIAIS 

por Nuno Alexandre Magalhães Pereira 

Ao longo dos anos, diversos investigadores construíram e aplicaram uma quantidade 
considerável de teoria à validação de sistemas tempo-real distribuídos, para ambientes 
industriais. Actualmente, alguns destes sistemas são baseados em tecnologias de 
comunicação Ethernet. Na realidade, existe um conjunto de características que estão a 
aumentar a veemência para colocar tecnologias de comunicação baseadas em Ethernet em 
ambientes industriais. Características como ligações full-duplex, comutação não bloqueante 
e baseada em prioridades são apenas alguns exemplos que justificam tal veemência. 

É particularmente significante a quantidade considerável de trabalho desenvolvido nos 
últimos anos dedicado à análise temporal de tecnologias baseadas em Ethernet. No entanto, 
acontece que a larga maioria destes trabalhos, limitam-se à análise de subconjuntos do 
sistema de computação e comunicação, não considerando portanto uma visão sistémica. De 
facto, a tecnologia Ethernet, por si só, não inclui funcionalidades acima das camadas mais 
baixas da pilha protocolar de comunicações. Onde se encontram então as camadas 
superiores, que permitem construir aplicações concretas? Adicionalmente, assumindo que 
estas se encontram facilmente disponíveis, qual é o impacto, a um nível sistémico, da 
introdução desses protocolos, mecanismos e aplicações no desempenho das aplicações 
distribuídas baseadas em Ethernet? Esta dissertação empreende esforços no sentido de 
fornecer algumas respostas razoáveis a estas questões. 

Para este fim, algumas abordagens para análise temporal são exploradas com o intuito 
de formar um enquadramento apropriado para o desenvolvimento de ferramentas e métodos 
adequados à extracção das propriedades temporais de redes Ethernet para ambientes 
industriais, baseadas em componentes disponíveis comercialmente. Neste trabalho é 
tomado o caso particular de sistemas Ethernet/IP distribuídos. 

Foram concebidos dois modelos que permitem encontrar o atraso ponto-a-ponto em 
sistemas Ethernet/IP distribuídos. O primeiro é um modelo analítico, assente em conceitos 
tipicamente utilizados em análises de sistemas computacionais tempo-real, que consideram 
um conjunto de suposições sobre os cenários mais pessimistas de utilização dos recursos 
em causa, para derivar os limites máximos do atraso ponto-a-ponto. O segundo modelo é 
baseado em simulação discreta de eventos, possibilitando uma solução adequada para a 
compreensão e análise do comportamento temporal de sistemas concretos. Este segundo 
modelo facilita também a abordagem do problema de uma forma não determinística, 
facultando medidas probabilísticas do cumprimento dos atrasos máximos impostos ao 
sistema. Tais resultados tornam-se relevantes à luz da natureza mais adaptativa e flexível 
dos sistemas industriais modernos. Adicionalmente, são apresentados resultados obtidos a 
partir dos dois modelos, juntamente com uma discussão sobre ambos. 
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C h a p t e r  1  

OVERVIEW 
1 Overview 

1.1 Introduction 
Today, high innovation-rate companies already make more than 60% of their profit on 

products less than two years old. Actually, in many industries, product lifecycles are 
halving every five years [1]. It is becoming less and less viable to sell from stock and have 
high value finished goods tying up capital. To satisfy the needs from a variety of clients, 
manufacturing companies are increasingly focusing on agility of operation. To serve these 
needs, rapid sequencing, configuration and reconfiguration of manufacturing equipment are 
essential.  

In such context, organisational and supply chain agility are becoming key requirements 
for manufacturing in any sector. From order receipt, through manufacturing and product 
delivery, an enormous number of variants that need to be handled are introduced, turning 
information management a vital strategic asset for any manufacturing company today.  

The factory-floor, being a central component of every manufacturing enterprise, is the 
starting point for greater information connectivity. Computer-based factory-floor controls 
for manufacturing machinery, materials handling systems and related equipment generate a 
wealth of information about productivity, product design, quality and delivery. Thus, 
factory-floor networking arises as a prominent building-block for unleashing this 
information in a cost-effective manner [2]. 

In a typical automated factory-floor, there will be a controlled system, for example 
robots or assembling stations and a controlling system that can include the computers and 
human interfaces that manage and coordinate the activities on the factory-floor. The 
controller system interacts with the controlled system based on the information available, 
collected from various sensors. It is imperative that the state of the controlled system, as 
perceived by the controlling system, is consistent with its actual state. Otherwise, the 
effects of the controlling systems’ activities may lead to serious failures. Hence, periodic 
monitoring of the environment as well as timely processing of the sensed information is 
necessary. Noticeably, timely delivery support from the network is essential to have 
distributed automation applications in the factory-floor.  

Consider, for example, a sub-system composed of a conveyer belt, where manufactured 
parts are carried after assembly. A robotic actuator is responsible for distributing the parts 
between several packaging stations. The information about where to deliver the parts is 
collected from another sub-system that gathers information about the available packaging 
stations. In such system, a timely coordination between the information collected from 
sensors that detect the parts on the conveyer belt, the packing sub-system and the robotic 
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actuator is essential for this system [3]. Failing to do so may result in the need for human 
intervention and possibly halting the production system. 

A system where its correctness depends not only on the logical result of computation, 
but also on the time at which the results are produced is defined as a real-time computing 
system [4].  

1.2 Research Context 
The timeliness analysis of real-time systems is usually exploited in a framework 

dominated by the notion of absolute temporal guarantees. In those systems, computational 
and communication loads are presumed to be bounded and known, and the worst-case (at 
least believed to be) conditions are assumed. In this way, the problem of engineering 
distributed real-time systems, of which factory-floor distributed computing systems are a 
representative example, becomes a problem of devising the appropriate tools and methods 
to assure that all deadlines are met in all circumstances [5]. 

To this end there are generally three, usually alternative, approaches. The first consists 
of building a prototype of the system and perform extensive testing. Although this is 
conceptually a simple method, in practice, it is usually hindered by many difficulties. To 
build the prototype may take a considerable amount of resources and even once the 
prototype is built, it may be impossible to consider and analyse all possible interactions that 
affect the timing behaviour of the system. 

Another option is to develop an analytical model of the worst-case timing behaviour of 
the system and draw conclusions based on the model. Much research has been done over 
the years to examine system behaviour based on several real-time system models. However, 
and for complex distributed systems, analytical models tend to be overwhelmed with 
simplifications that often lead to very pessimistic assumptions, and therefore to very 
pessimistic worst-case results. Even knowing that a number of existing techniques may 
potentially be used and adapted to reduce this pessimism level, the benefit may appear at 
the cost of adding rather complex abstractions, such as precedence relationships [6], event 
phasing [7, 8] and inheritance of time characteristics [9, 10]. These, unfortunately, may lead 
to intractable analytical models, thus making it further difficult to handle and reason the 
analytical abstractions. 

To add on top of this, some characteristics of the system may not lend themselves to 
deterministic analysis techniques. For example, the arrival pattern of messages or 
communication times may not be completely deterministic and conversely can be 
characterised in a probabilistic manner. The emergence of “more complex” distributed 
systems, with a more flexible and adaptive nature creates the eagerness to approach the 
timeliness evaluation problem in a different way: instead of using a guaranteed approach, 
why not tackling the problem by trying to find a probabilistic measure of meeting 
deadlines? 

It is in this context that simulation (the third alternative for the timeliness evaluation of 
a system) can emerge as an adequate solution to tackle the problem of engineering complex 
distributed real-time systems. On the other hand, the relatively recent advent of fast and 
inexpensive computational power allows the approach of trying to model the system as 
faithfully as possible, and then use simulation to obtain accurate characteristics. The use of 

2 



Chapter 1.  Overview. 

simulation models that mirror the behaviour of the system under analysis may provide a 
reasonable framework for the timeliness evaluation of such distributed real-time systems. In 
this dissertation, such approach is applied to a specific COTS technology, Ethernet/IP [11]. 

1.3 Hypothesis and Objectives 
This dissertation explores the development of tools suitable to extract temporal 

properties of Ethernet-based factory-floor communication systems.  This problem can be 
tackled using different and possibly inter-linked methods.  

A major question to be answered is to what extent simulation can be used to extract 
useful timeliness results about the modelled systems. 

1.4 Outline of the Dissertation 
This dissertation will proceed by firstly presenting the technological context behind it. 

Details of the factory-floor technology chosen to support the analysis of an overall 
communication infrastructure is presented (Chapter 2). Then, in Chapter 3, some of the 
extant simulation tools for the development of network simulation models are surveyed. 

In Chapter 4, the basis for the timeliness approaches followed is presented. Some 
introductory real-time systems concepts are laid out to introduce the foundations of 
traditional response time analysis, also applicable to the analysis of distributed systems. 
Then, the statistical grounds for adequately extracting performance measures from 
simulation output data are overviewed. 

The next two chapters present the models developed for the timeliness analysis of 
Ethernet/IP-based distributed systems. These models are based on the two approaches 
introduced in Chapter 4. Therefore, in Chapter 5, a worst-case analytical model is proposed. 
In Chapter 6, a simulation model for Ethernet/IP, using a specific simulation tool is 
proposed. 

The closing chapter (Chapter 7) of the dissertation presents a brief summary and 
conclusions of this work, along with a discussion on the results obtained by both models 
developed. It also introduces a number of topics for future research. Among these topics, 
the advancement of some options for the extraction of other measures of performance from 
simulation models, assumes a particular relevance. 

1.5 Research Contributions 
The main contributions of this dissertation are the following: 

• an analytical model for EIP distributed systems, providing the worst-case end-to-
end response time of distributed transactions [12]; 

• a simulation model for EIP distributed systems [13]; 
• approach to a framework for extracting measures of performance from simulation 

models, including performance measures other than means [14]; 
• a framework for the extraction of overall temporal properties of COTS factory-

floor communication systems through the combination of different, but potentially 
integrated, types of analysis [15]. 
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TECHNOLOGICAL CONTEXT: 
COMMUNICATION INFRASTRUCTURE 

2 Technological Context: Communication Infrastructure 

2.1 Introduction 
Over the last decade, factory-floor networking has evolved from relatively passive and 

isolated data collection or reporting roles to feedback control and diagnostics applications, 
integrated with enterprise-wide information systems. Modern industrial systems must be 
able to exploit commercial information technologies, including Commercial-Off-The-Shelf 
(COTS) operating-systems; TCP/UDP/IP based applications and general purpose networks. 

However, it is interesting to observe that the development of factory-floor networking 
has been far slower than the development of office networks. One of the reasons for this 
delay is related with the timing requirements found in factory-floor applications. To have 
precise control over the data-sampling task, a common solution used to be employing point-
to-point wiring. While being a simple solution, it is important to note that traditional point-
to-point wiring is very limited in the information it transmits or receives from the field, 
because only the process variable is communicated, without any diagnostic or health 
information. The first step towards an actual factory-floor networking environment was the 
fieldbus concept. Fieldbusses are a cost-saving solution (being cabling one of the major 
cost components in any factory-floor installation) that provides much more information and 
flexibility. Nevertheless, fieldbus technologies present some important drawbacks. The 
fieldbus market is a small one (when compared to the office network market), where the 
prices are fairly high and the technology development is rather slow. Conversely, the office 
network market is rapidly evolving, with enormous data throughput increases and price 
drops of equal magnitude. Particularly, the high-speed properties of Ethernet, its familiarity 
and low cost make it a potential candidate for factory-floor communications.  

Ethernet was, until recently, generally known for exhibiting unstable performance (e.g. 
unbounded delay) under heavy load. However, advances in switched-Ethernet made 
Ethernet more predictable, and have increased the eagerness to introduce Ethernet-based 
technologies into the factory-floor [16, 17]. 

Still, there are obstacles to overcome. Indeed, a few research efforts on Ethernet 
technologies have been focusing on timeliness, trying to find solutions to issues such as 
bounded response time evaluation, optimal scheduling policies, switching topologies or 
clock synchronisation [18]. However, they essentially consider the timing characteristics at 
the Data Link Layer, meaning that an overall approach embracing a fully defined protocol 
stack is still lacking.  
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While until a couple of years ago a valid justification for this gap could eventually be 
the lack of technologies offering an overall ensemble of protocols and mechanisms [19], 
this justification cannot serve that purpose anymore. In fact, there are already some COTS 
solutions for Ethernet-based systems providing a fully-defined communication protocol 
stack. One of such solutions, based on encapsulation technologies, is Ethernet/IP (EIP), 
where IP stands for “Industrial Protocol“. 

In the next section some further details will be surveyed on Ethernet technologies, in 
particular those characteristics enabling its use to support real-time distributed systems. 
Then, Section 2.3 is devoted to describing the more important details related to Ethernet/IP 
technologies. 

2.2 Ethernet Review 
Ethernet is a set of network cabling and signalling specifications originally developed 

by Xerox, in the late 1970. It was called Ethernet after the luminiferous ether as a way of 
describing an essential feature of the system: the physical medium (i.e., a cable) carries bits 
to all stations, in a way analogous to the luminiferous ether that once was thought to 
propagate electromagnetic waves through space. 

In 1980, Digital Equipment Corporation  (DEC), Intel and Xerox began joint promotion 
of this baseband,  Carrier Sense Multiple Access/Collision Detection (CSMA/CD) 
computer communications network over coaxial cabling, and published the “Blue Book 
Standard” for Ethernet Version 1.  This standard was later enhanced, and in 1985 Ethernet 
Version 2 was released. 

The Institute of Electrical and Electronics Engineer’s (IEEE’s) Project 802 then used 
Ethernet Version 2 as the basis for the 802.3 CSMA/CD network standards. The IEEE 
802.3 standard is generally interchangeable with Ethernet Version 2, with the greatest 
difference being the construction of the network packet header. For the sake of precision, it 
is important to point out that, in the context of this document, 803.2 would be a more 
appropriate terminology than Ethernet, when referring to the family of CSMA/CD-based 
Medium Access Control (MAC) protocols. 

A complete description of all Ethernet specifications is far outside the scope of this 
dissertation, and for further details the reader should refer to the IEEE 802.3 standard [20]. 

Without going into details, the general idea of the CSMA/CD MAC protocol can be 
described in the following way. When a station wants to transmit, it listens to the cable. If 
the cable is busy, the station waits until it goes idle. Otherwise, it transmits immediately. If 
two or more stations begin transmitting on an idle cable simultaneously, the messages will 
collide. All colliding stations then terminate their transmission, wait a random time, and 
repeat the whole process all over again [21]. 

In a heavily loaded (in terms of traffic volume) network, a station can experience an 
unbounded number of collisions and, therefore, the time to transmit a frame is also 
unbounded, justifying the argument of non-deterministic behaviour frequently utilised 
against the use of Ethernet for distributed control applications in the factory-floor. 
Determinism enables systems designers to accurately predict the worst-case transmission 
delay. Another requirement for factory-floor networks is high repeatability (or low jitter); 
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That is, the guarantee that a periodic message is transmitted successfully almost 
periodically. This requirement was also difficult to attain with former Ethernet-based 
technologies.  

Developments in Ethernet technology have improved the determinism, repeatability and 
performance of Ethernet to a great extent. Next, a briefly survey some of those 
developments is made. 

A major step toward deterministic and repeatable behaviour in Ethernet networks 
resides in the elimination of the random behaviour of CSMA/CD, by avoiding collisions in 
the network. This can be achieved by using specialised hardware at the heart of the 
communication infrastructure with an array of ports to which all the communicating 
devices are connected to. This specialised hardware, called switching hubs, layer 2 switches 
or simply switches, allow traffic to be relayed between any two ports. Current switch 
technology does this operation at very high speeds and introducing, and extremely low 
latency.  

Switch Fabric

MAC PHY TxRx
MAC PHY TxRx

MAC PHY TxRx

Port 1
Port 2
Port 3

Switch Control
Lookup Engine

LED Control
 

Figure 1. Typical modern switch internals 

Most modern Ethernet switches (internals depicted in Figure 1) support full duplex 
operation, allowing simultaneous two-way transmission over point-to-point links. Since 
switches provide a separate collision domain for each port, using full-duplex 
communication, collisions do not exist at all.  

Recent switches typically announce wire-speed and non-blocking operation. Wire-speed 
means that all ports of a switch can simultaneously transmit or receive at their full bit rates. 
This requires that the switch fabric can operate at a bit rate equalling to the aggregate 
speeds of all the ports. For example, 24 full-duplex ports operating at 200 Mbps (100 Mbps 
in each direction) implies a fabric switching at 4.8 Gbps (24×200 Mbps). A switch is non-
blocking if it can forward a message to the destination port as long as that port is free, while 
a blocking switch may not be able to forward a message to a free port due to internal 
conflicts in the switch fabric. 

If traffic is sent to an output port at a higher rate than its capacity, packets must be 
queued. Queuing exists in any switch, regardless of whether it is full wire-speed or not, and 
the analysis of the queuing delay depends on knowledge on the input traffic pattern. To 
alleviate switch queuing problems, support for message prioritisation (IEEE 802.1p) was 
introduced. The standard specifies a layer 2 mechanism for giving mission-critical data 
preferential treatment over non-critical data [20, 22]. The concept, driven by the multimedia 
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industry, is based on priority tagging of packets and implementation of multiple queues to 
discriminate packets. For tagging purposes, IEEE 802.3q [20] defines an extra field for the 
Ethernet MAC called Tag Control Info (TCI), containing 3 priority bits, thus the standard 
defines 8 different levels of priority (Figure 2). 

Destination Source Tag Type Payload FCS 

0x8100 XXX X 0xXXX 

3-bit 802.1p Priority Field 

Canonical 1 bit 

12-bit 802.1q VLAN Identifier 

Tagged frame Type interpretation  
Figure 2. Ethernet MAC header with 802.1q tagging 

Taking a closer look at Figure 2, it is possible to observe that the tag contains more than 
just priority bits. It also contains a 12-bit VLAN identifier. This field is used in advanced 
switches to allow logically separated networks - virtual LAN (IEEE 802.1q). VLANs 
permit configuring the switch so that its ports are subdivided into different broadcast 
groups, such that all packets received on one port of a group will only be transmitted to the 
ports on the same group, thus isolating broadcast traffic between logically separated 
networks (each group).  

Several fault-tolerance mechanisms are available through spanning trees and port 
trunking. The Spanning Tree Protocol [20] can be used to provide redundant network paths, 
still protecting against network loops. Port Trunking establishes backbone links by treating 
multiple parallel links as a single network pipe. It also provides link redundancy, i.e., traffic 
on any failed link comprising a network trunk, automatically switches over to the other 
links in the trunk. 

By itself, Ethernet only supports transmission of frames in a LAN. Ethernet lacks more 
complex features required for a fully functional LAN. Generally, Ethernet networks support 
one or more communication protocols that run on top of Ethernet and provide sophisticated 
data transfer and network management functions. It is the communication protocol that 
determines the level of functionality supported by the network. Protocols (such as 
AppleTalk, Inter-Process Communication (IPC) or Manufacturing Automation Protocol 
(MAP)) have been implemented over Ethernet. Of these, TCP/IP is the most popular, due to 
the emergence of the global Internet, including the World Wide Web (WWW). Although 
TCP/IP runs on physical media other than Ethernet, and Ethernet supports other 
communication protocols, the two have become increasingly linked.  

Throughout the years, Ethernet has become a de facto standard, supporting many widely 
spread upper layer protocols like the TCP/IP stack, including the vast range of TCP/IP’s 
stack application protocols such as FTP, HTTP or SNMP. This facilitates the use of 
Ethernet and allows easily integrating many COTS software components such as OLE for 
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Process Control (OPC), Microsoft Distributed Component Object Model (DCOM), 
Common Object Request Broker Architecture (CORBA), Java/Remote Method Invocation 
(RMI), and many others. 

To summarise, today’s Ethernet technology offers the following main interesting 
features for factory-floor networks: 

• generous bandwidth (e.g. 10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps); 

• deterministic network access delay, due to switching principles and full-duplex 
links; 

• priority handling (IEEE 802.1p), a basic support mechanism for real-time 
communication; 

• broadcast traffic isolation and enhanced security through VLANS; 

• reliability improved using Spanning Tree Protocol on redundant links; 

• de facto standard supporting many widely spread upper protocol stacks.  

2.3 Ethernet/IP (EIP) 

2.3.1 General Aspects 
Ethernet/IP (EIP), is a communication system suitable for use in industrial 

environments and time-critical applications [11]. It is an open industrial networking 
standard that takes advantage of COTS Ethernet communication chips and physical media, 
implementing a full suite of control, configuration and data collection services on top of an 
Ethernet network. 

EIP makes use of an open protocol named Control and Information Protocol (CIP). CIP 
is an Application Layer protocol that implements a distributed object model. The CIP 
protocol specification [23] is quite extensive. Mainly, it defines the abstract object 
modelling used to describe the suite of communication services available, the externally 
visible behaviour of a CIP node and a common means by which information within a CIP-
based network is exchanged. It also defines the messaging protocol used and the 
communication objects necessary to manage and provide run-time exchange of messages. 

In addition, the CIP protocol specification also includes a fairly large collection of 
commonly used objects such as analogue Input/Output points, position sensor, AC/DC 
drive, etc, called the General Object Library. To avoid having devices of similar 
functionality from different vendors described with dissimilar object structures, devices of 
similar functionality are grouped into device types, with an associated device profile that 
describes the objects (some required, some optional) and the behaviour associated with that 
particular type of device.  

The CIP protocol specification also made provisions for configuring the devices 
defining an Electronic Data Sheet (EDS) format to provide a full description of all 
configurable information of a device. 
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CIP is implemented on top of several different networks: DeviceNet [24], ControlNet 
[25] and Ethernet, allowing transparent application-level interoperability between factory-
floor equipment. Figure 3 depicts CIP’s common layering on top of the different networks 
with the corresponding mappings to the Open Systems Interconnection (OSI) reference 
model. 

Data Link Layer 

Transport Layer 

Physical Layer 

Network Layer 

Application Layer 

Session and 
Presentation Layers

Semi-
conductor 

AC Drives Pneumatic 
valves 

Application Object Library 

Position 
controller 

Other 
profiles 

CIP Messaging 

DeviceNet  
Transport 

ControlNet  
Transport 

Ethernet DLL 
Future ? 

(ATM, …) 

IP 

TCP 
Encapsulation 

UDP 

DeviceNet 
Phy. Layer 

ControlNet 
Phy. Layer 

Ethernet 
Phy.Layer 

DeviceNet DLL 
(CAN) 

ControlNet DLL
(CTDMA) 

Ethernet DLL 
(CSMA/CD) 

 
Figure 3. CIP common layering over different networks  

 DeviceNet [24] was the first member of this protocol family and it is a CIP 
implementation of the Controller Area Network (CAN) protocol layer. In its typical form, 
(ISO 11898, [26]) CAN only defines the Data Link Layer (DLL) and Physical Layer of the 
7-layer OSI reference model, while DeviceNet covers the upper layers. The low cost of 
implementation and the ease of use of DeviceNet has led to a considerable popularity, 
nevertheless, it is limited to the small payload of the CAN protocol (8 bytes) and to the 
maximum 1 Mbps bandwidth obtainable with CAN. 

ControlNet [25], introduced in 1997, essentially implemented the same protocol on a 
new physical layer, based on a specific method called Concurrent Time Domain Multiple 
Access (CTDMA). Weighed against CAN, CTDMA allows a higher throughput (5 Mbps), 
induces strict determinism and repeatability, while extending the length of the bus. 
ControlNet comes, however, with a fairly high price tag, being its usage restricted to the 
more demanding applications. 

EIP was the latest addition to the CIP family. It is based on Ethernet and implements the 
CIP distributed object model using TCP/UDP/IP services. Figure 4 presents the relation of 
CIP to other protocols in a TCP/IP conceptual model. 
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HTTP CIP SNMP DNS 
Application Layer 
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IP 
Internet Layer 

IGMP ARP RARP ...

Ethernet 
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Host-to-network Layer 
(OSI Data link+Physical) 

Token Ring ARCnet … 
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ICMP

 
Figure 4. CIP and Ethernet in the TCP/IP layering model 

2.3.2 CIP Messaging 
In CIP-based networks the majority of the messaging performed is done through 

connections. CIP connections define the packets that will be produced on the network, and 
these can be of two types: Explicit or Implicit messaging.  

Explicit messaging connections provide generic, multipurpose communication paths 
between two devices. Explicit messages provide the typical request/response-oriented 
network communication. Each request contains explicit information that the receiving node 
decodes, acts upon, and to which generates an appropriate response. 

Implicit messaging connections provide dedicated, special purpose communication 
paths between a producing application object and one ore more consuming application 
objects. They are called implicit messages because the data that will be exchanged is 
identified at the time the connection is established and connection identifiers are assigned. 
Then, each transmission contains only the current values for the application objects that 
where agreed upon when the connection was established and the connection identifier, thus 
having a very small overhead.  

There are four principal types of Implicit messages: Polled, Strobed, Cyclic and Change 
of State (CoS). With polled messages, a device assumes the role of master and sequentially 
queries all of the slave devices by sending their output data and allowing them to reply with 
their input data. Strobed is a special case of polled in which the master sends out a single 
multicast request for data and the slaves sequentially reply with their data, requiring no 
further messages from the master. Cyclic messages are produced on a predetermined rate 
basis, defined by the Requested Packet Interval (RPI) parameter. In Change of State, as the 
name suggests, messages are only produced in response to an event which caused the data 
to change. Change of State also maintains a background cyclic rate so that consuming 
applications know that the node is still online. 

Implicit messaging is the messaging used for time critical I/O data, and therefore will 
receive the focus of our attention, specially the Cyclic Implicit CIP connections.  
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2.3.3 Producer/Distributor/Consumer Model 
As mentioned in the previous section, underlying CIP messaging is a 

producer/distributor/consumer model, replacing the more conventional source/destination 
(master/slave) model. The producer/distributor/consumer model is also usually found in 
other factory communication networks [27].  

In a source/destination model (Figure 5), the source communicates with each 
destination, one at a time. Real-time data must be adjusted to maintain accuracy as 
communication takes place with each source, one at a time. Some of the destinations may 
not need the information, so there is some bandwidth waste. Moreover, the delivery time 
changes with the number of destination devices. 

Work starts 
now. 

Work starts 
now. 

Work starts 
now. 

Work starts 
now. 

 
Figure 5. Source/destination model illustration 

In the producer/distributor/consumer model (Figure 6) one producer broadcasts 
(multicasts) the data once to all the consumers. All consumers see the data simultaneously, 
and may choose whether to consume (receive) the data or not. Delivery time is consistent 
and bandwidth usage is optimised, no matter how many consumers exist. 

Work starts now. 

 
Figure 6. Producer/distributor/consumer model illustration 

In EIP networks, the distribution of messages is supported upon multicast UDP/IP that, 
in turn, is mapped onto Ethernet multicast.  

In multicast UDP/IP, packets are not transmitted directly to the IP address of the 
destination node. Instead, they are transmitted to a specific address that identifies a group of 
nodes – an IP multicast address. Nodes may joint/leave groups using Internet Group 
Management Protocol (IGMP) messages. Generally, nodes will join multicast groups at 
connection establishment time, using information exchanged during this process.  

The advantages of using multicast UDP/IP are twofold: firstly, it is the lightest transport 
layer, introducing the least amount of overhead for processing and transmitting each 

12 



Chapter 2.  Technological Context: Communication Infrastructure. 

message; secondly, multicast-based transmission facilitates the distribution of data to 
multiple destinations.  

2.3.4 Ethernet/IP Devices 
EIP networks are constituted by three structuring types of nodes: Remote I/Os, 

Controllers and interconnecting Switches. Diverse modules can compose the Remote I/O 
and Controller nodes (Figure 7). Typically, a Controller is composed of a number of I/O 
modules (labelled in the Figure 7 as I or O), several Controller modules (C) and one or 
more Ethernet Adapters (EA). A Remote I/O node has no Controller modules. 

 

EA 
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C

Controller Remote IO 
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CIP
TCP/UDP

IP
Ethernet
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O 

Backplane (CIP) Backplane (CIP) 

……

 
Figure 7. EIP basic nodes 

Within each node, the several modules communicate among them via a device-specific 
backplane. The nodes communicate with each other via Switched Ethernet. Inside the node, 
communication is based on CIP messages and, when the messages are to be delivered to 
another node, these messages are encapsulated in TCP/UDP/IP packets by the Ethernet 
Adapter.  

In the case of time critical data, as referred earlier, these messages are encapsulated in 
UDP/IP packets and delivered using multicast services. The periodicity of time critical data 
CIP connections is maintained internally in each producing module. Each module maintains 
a timer for the configured RPI of each connection.  

In the following section, the diverse components of the end-to-end latency are 
introduced, leading to a first delineation of the end-to-end delay in EIP to be analysed. It is 
important to stress the fact that some of the architectural details and implementations are 
open to alternative options from technology providers. The descriptions presented are a 
result of information gathered from a technology provider, and of assumptions taken from 
the available information. The general assumptions made on the devices and network 
analysis are also within the next section. 
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2.3.5 Defining an End-to-End Transaction 
The several components considered to makeup an end-to-end EIP transaction are 

illustrated using the following simple EIP network (Figure 8). 
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Figure 8. EIP end-to-end transaction 

The EIP transaction considered is an independent transaction, starting at the input 
module of the Remote I/O ( ). After the hardware delay to energise the input and a user 
defined filter delay, a message with the input data will be generated, at the periodicity 
defined for the input data connection. This message will then suffer the contention caused 
by the device backplane ( ), and will arrive at the Ethernet Adapter, where it is processed, 
encapsulated and transmitted via the Ethernet communication interface ( ). With this, the 
message arrives at the Ethernet switch, where it is relayed to the corresponding output 
port(s), and later will arrive at the Controller Ethernet Adapter ( ).  At the Ethernet 
Adapter ( ), the message is processed, in order to be passed to the Controller module, 
passing through the Controller backplane ( ). At the controller the input data will be 
processed by a controller task, characterised by a worst-case response time, that generates 
the corresponding output data ( ). The output data will be transmitted at a defined 
periodicity and will go back through the inverse path ( , , ), until it reaches the Ethernet 
Adapter of the Remote I/O ( ), is processed and delivered to the output module that will, 
in result, energise the corresponding output(s) ( ). 

2.3.6 Assumptions 
Before continuing, a few words on assumptions are worthy to be provided. Throughout 

the development of the EIP models to be later described in this dissertation, a number of 
assumptions where introduced in order to narrow, in some reasonable way, the number of 
variables needed to be accounted for. Additionally, these assumptions also reflect some of 
the implementation details specific of the considered EIP devices. 

Thus, the following assumptions will be considered: 

• traffic in the network is restricted and isolated; 

• processing and network traffic related to the network setup period is negligible; 

• only Cyclic Implicit CIP connections are assumed to exist in the network, and 
their periods are known; 
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• the controller tasks are independent, execute periodically and have a bounded 
worst-case response time; 

• during task execution, the input data is processed and corresponding output 
data is generated once; 

• packet processing time in the Ethernet Adapter is characterised; 

• time to transfer a frame in the Backplane is characterised; 

• the input filter delay is a known variable, defined by the user; 

• output module hardware delay is negligible; 

• network data rate is known; 

• switch latency and other switch processing delays are characterised; 

• propagation delays are ignored. 

2.4  Summary 
Characteristics like generous bandwidths, switching technologies, priority handling and 

support for widely spread upper protocol stacks are driving an increasing eagerness for 
extending Ethernet to also cover factory-floor distributed real-time applications. This 
chapter exposed the basics of Ethernet technology and the developments of factory-floor 
communication systems driving that eagerness.  

Additionally, the Commercial-Off-The-Shelf (COTS) factory-floor communication 
system to be investigated – Ethernet/IP (EIP) – is introduced in this chapter. The 
fundamentals of CIP, the application layer protocol used by EIP, were brought out, and 
some details of the EIP devices considered for the analysis were conveyed. Finally, the 
assumptions included in the analysis to be presented later in this dissertation were 
enumerated. 
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TECHNOLOGICAL CONTEXT: 
SIMULATION SOFTWARE 

3 Technological Context: Simulation Software 

3.1 Introduction 
Simulation is basically the imitation of the operation of a real-world system over time. 

The availability of special-purpose simulation languages, increasing computing capabilities 
at a decreasing cost per operation and advances in simulation methodologies, have made 
simulation one of the most accepted tools in operations research and systems analysis [28].  

Simulation, for the study of any system, usually involves the development of a model, 
where the details and behaviour that affect the system under study are represented. A model 
of a system can be classified, according to its nature and system modelled, into several 
different types. Simulation models can be classified as being static or dynamic, 
deterministic or stochastic, and discrete or continuous. A static simulation model represents 
a system at a particular point in time, while dynamic simulation models represent systems 
as they change over time.  

Simulation models that contain no random variables are classified as deterministic.  
Deterministic models have a known set of inputs, which will result in a unique set of 
outputs. On the other hand, a stochastic model has one or more random variables as inputs, 
which result in random outputs. 

A system can be classified as discrete or continuous, according to the way its state 
variables change. The state of a system is defined to be the collection of variables necessary 
to describe the system at any time, relative to the objectives of the study. When the state 
variables change only at a discrete set of points in time, the system is classified as discrete. 
Conversely, in a continuous system, the state variables change continuously over time. In 
practice, very few systems are strictly discrete or strictly continuous, but since one type 
predominates for most systems, it is usually acceptable to classify a system as either being 
discrete or continuous [28]. 

In the case of discrete-event simulation, the model is analysed by numerical rather than 
by analytical methods.  Analytical methods employ the deductive reasoning of mathematics 
to solve the model. Numerical methods employ computational procedures to solve 
analytical models.  In the case of simulation models, which employ numerical methods, 
models are executed rather than solved. That is, an artificial history of the system is 
generated based on the model assumptions, and observations are collected to be analysed 
and to estimate the true system performance measures. 
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Predominantly, computer systems and communication networks are described by state 
variables that change discretely, justifying the choice for developing discrete-event 
simulation models.  

The considerable amount of established techniques for its development and analysis and 
the large number of software packages readily available for this type of simulation, are just 
some of the additional characteristics that further corroborate this option. Some simulation 
tools will be overviewed throughout this chapter. 

Generally, the implementation of discrete-event simulation models encompasses a 
number of common features such as: 

• generation of random numbers; 

• advancing simulated time; 

• maintaining a list of events; 

• determining the next event from the list; 

• passing control to the appropriate block of code; 

• collecting output data; 

• detecting error conditions. 

These features are, in reality, so common in the implementation of discrete-event 
simulation models that they have led to the emergence of special-purpose simulation 
software tools that provide these common facilities for the implementation of simulation 
models. These software tools can be generally classified in two distinct categories: 
simulation languages and simulation packages. The latter can be divided in application-
oriented and general-purpose simulation packages.  

A deeper debate of this matter shall not be attended. As this dissertation is focusing on 
the simulation of a communication network, a discussion of application-oriented simulation 
packages for this purpose will suffice. 

3.2 Simulation Languages 
Simulation languages provide maximum flexibility for the simulation developer who 

wants to construct simulators by means of programming. Because most simulation 
languages have expressive power equivalent to a general-purpose programming language, 
the simulation developer has great flexibility in designing and implementing the simulator. 
The trade-off for this flexibility is the development effort required to program the 
simulator.  

Much work has been done at the simulation language level, either in the form of true 
languages or as function libraries. Some examples of freely available simulation languages 
in use today are briefly addressed below. 

PARSEC (PARallel Simulation Environment for Complex systems) [29] is a C-based 
simulation language developed by the Parallel Computing Laboratory from the University 
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of California, Los Angeles, for sequential and parallel execution of discrete-event 
simulation models. It is available in binary form only for academic institutions.  

SMURPH (System for Modelling Unslotted Real-time PHenomena) [30] is intended for 
simulating communication protocols at the medium access control (MAC) level. SMURPH 
can be viewed as a combination of a protocol specification language based on C++ and an 
event-driven, discrete-time simulator that provides a virtual and controlled environment for 
protocol execution. SMURPH can be used for designing low-level communication 
protocols and for investigating their quantitative and qualitative properties. 

SIMSCRIPT [31] is a simulation language with both declarative and procedural 
features, designed for discrete-event and hybrid discrete/continuous modelling. It has been 
in continuous use and development since its invention in 1962. The syntax and semantics of 
SIMSCRIPT II are designed to make simulation programs easy to write and understand. 
The language syntax is “English-like” and fairly high-level. Today, SIMSCRIPT II.5 is 
more than a simulation language, being a commercial product offered by CACI Products 
Company. An important contribution from SIMSCRIPT is its considerable impact on the 
development of SIMULA (SIMUlation LAnguage), through its list processing, time 
scheduling mechanisms, random drawing and other utility routines. 

The SIMULA [32] programming language was designed and built at the Norwegian 
Computing Centre (NCC) in Oslo between 1962 and 1967. It was originally designed and 
implemented as a language for discrete event simulation, but was later expended and re-
implemented as a full scale general purpose programming language. Although SIMULA 
never became widely used, the language has been highly influential on modern 
programming methodology. 

CSIM/C++SIM [33] is a programming tool for simulation of discrete processes. It is an 
extension of the C language obtained by including SIMULA-like possibilities by means of 
C macros and functions. CSim uses a special C-functions and C-macros library. The typical 
application area of CSim is functional validation of distributed, parallel and fault-tolerant 
systems and programs. Similarly, C++SIM is a collection of C++ libraries. 

3.3 Network Simulation Packages 
Network simulation packages provide a more comprehensive support than simulation 

languages. They include the basic constructs for the development of network simulation, 
typically require less programming effort and have a smoother learning curve, when 
compared to simulation languages. Many network simulation packages include some type 
of pre-built and reusable models of networking protocols, devices and applications. 
Additionally, they also provide means for using and creating user interfaces to the 
simulation models, facilitating their development, debugging and understanding. 

There exist several examples of such simulation packages. Some characterisation to a 
number of these is provided next. 

OPNET [34] is widely held as the state-of-art in network simulation. It is a suite of 
products that combines predictive modelling and a comprehensive understanding of 
networking technologies to enable design, deployment, and management of network 
infrastructures, network equipments, and networked applications. In particular, OPNET 

 19



Chapter 3.  Technological Context: Simulation Software. 

Modeller is a development environment, allowing to design and study communication 
networks, devices, protocols, and applications. OPNET is a commercial product, although it 
provides some academic licensing programmes, albeit with some restrictions. 

NetSim [35] is intended to offer a very detailed simulation of Ethernet, including 
realistic modelling of signal propagation, the effect of the relative positions of stations on 
events on the network, the collision detection and handling process and the transmission 
deferral mechanism. However, its development has stagnated and it is infeasible its 
extension in order to address modern networks. 

CNET [36] is a discrete-event network simulator enabling experimentation with various 
data-link layer, network layer, routing and transport layer networking protocols. It has been 
specifically developed for, and used in, undergraduate computer networking courses taken 
by thousands of students worldwide. 

Ns-2 (Network Simulator 2) [37] is a discrete event simulator targeted at networking 
research. Ns-2 provides substantial support for simulation of TCP, routing, and multicast 
protocols over wired and wireless (local and satellite) networks. Ns began as a variant of 
the REAL [38] network simulator in 1989, and has evolved substantially over the past few 
years. The full source code of ns-2 can be downloaded and it can be compiled in multiple 
platforms, including the most popular UNIX flavours and Windows. 

OMNeT++ (Objective Modular Network Testbed in C++) [39], is a public-source, 
object-oriented modular discrete event simulation package that can be used for modelling 
communication protocols, computer networks, traffic modelling, multiprocessors and 
distributed systems. OMNeT++ also supports animation and interactive execution. 

The previous list is not, by any means, comprehensive. It presents the several options 
considered for the development of the work presented in this dissertation. Among the 
simulation packages described, only ns-2 and OMNeT++ were assessed has possible 
solutions for the use in the work described by this dissertation. While ns-2 is a network 
simulation classic, it has many drawbacks, when compared with OMNeT++, which is a 
more modern and structured simulation package. The following summarises a number of 
advantages from OMNeT++ over ns-2. 

• the OMNeT++ simulation kernel is a class library: the components are developed 
as any other class library, and then linked with the executable library. There is no 
need to modify OMNeT++ sources anywhere. In contrast, ns-2 tends to be a bit 
monolithic: to add implementations to it, it is necessary to download the full source 
and modify it in several places; 

• OMNeT++ follows a modular approach: the model is assembled from self-
contained building blocks. These components are reusable “as is” in other 
simulations; 

• ns-2 has some considerably detailed built-in concepts about nodes, agents, 
protocols, links, packet representation, network addresses, etc. This often increases 
the difficulty in developing models that include even slightly different concepts. 
OMNeT++ is completely flexible and generic: it is possible to simulate anything 
that can be mapped to active components that communicate by passing messages; 
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• in OMNeT++, it is possible to fight model complexity by using hierarchical design: 
any complex component can be implemented as one unit or built out of several 
smaller components. In ns-2, models are “flat”: 

• OMNeT++ has a powerful interactive graphical environment, where it is possible to 
examine nearly everything during execution. Ns-2 only includes Network 
AniMator (NAM), which is little more than a playback tool. 

3.4 A Few More Details on OMNeT++ 
OMNeT++ is a discrete event simulation package written in C++ with a primary 

application area in the simulation of computer networks and other distributed systems. The 
OMNeT++ simulation models are composed of hierarchically nested modules that 
communicate with message passing. Modules at the lowest level are programmed using 
C++, while the model structure is defined by a topology description language. Using this 
topology description language, modules can be combined and reused flexibly. 

The package contains the C++ simulation kernel library, a manual, a simulation kernel 
API reference, a graphical topology editor, a graphical runtime environment with 
interesting animation and tracing capabilities, as well as a command-line runtime 
environment for batch execution. It also includes several other tools and sample 
simulations. 

One of the strengths of OMNeT++ is that one can execute the simulation under a 
graphical user interface with interesting features. The GUI makes the internals of a 
simulation model fully visible to the person running the simulation: it displays the network 
graphics, animates the message flow and lets the user peek into objects and variables within 
the model. The use of the tracing/debugging capabilities does not require extra code to be 
written by the simulation programmer. 

OMNeT++ already contains detailed IP, TCP, and FDDI protocol models and several 
other simulation models (file system simulator, Ethernet, a framework for simulation of 
mobility, etc.). However, the simulation model suite for OMNeT++ has not crystallised yet 
and many of these models are still under development. 

OMNeT++ is open source, free for non-profit usage, and has an active user community. 
It has been tested on Linux, Solaris, Windows and Mac OSX. The Web site [40] provides 
source code, binaries, documentation, mailing lists, a Web-based discussion forum and 
information on workshops. OMNeT++ modelling concepts will be briefly described now. 

An OMNeT++ model is composed of hierarchically nested modules which 
communicate with messages. The top level module is the system module (often called 
network). The system module contains sub-modules. These sub-modules may be of two 
different types: compound modules and simple modules. Modules that can contain sub-
modules are termed compound modules. These may contain an unlimited nesting of sub-
modules. Conversely, modules that do not contain any sub-modules are called simple 
modules and are at the lowest level of the module hierarchy (Figure 9). 
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Simple 
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Figure 9. OMNeT++ module hierarchy 

Simple OMNeT++ modules contain the algorithms of the models. These are 
implemented as C++ classes derived from a simple module base class, by redefining the 
virtual function that contains the algorithm. The full flexibility and power of the 
programming language can be used, supported by the OMNeT++ simulation class library. 

Modules communicate by exchanging messages. In a simulation, messages can 
represent frames or packets in a communication network, jobs or customers in a queuing 
network, or other types of mobiles entities. OMNeT++ class library includes a message 
base class. This class can be extended to arbitrarily represent any type of mobile entity 
needed for the simulation model. 

Simple modules can send messages either directly to their destination or along a 
predefined path, through gates and connections. Gates are the input and output interfaces of 
modules. Messages are sent out to output gates and received through input gates. Each 
connection is created within a single level of the module hierarchy. In a compound module 
one can connect the corresponding gates of two sub-modules, or a gate of one sub-module 
and a gate of the compound module (Figure 10). Due to the hierarchical structure of the 
model, messages typically travel through a series of connections, to start and arrive in 
simple modules. 

 Compound Module 

Simple 
Module 

Simple 
Module 

Compound Module 

Simple 
Module

Simple 
Module

Gates 
Connections  

Figure 10. OMNeT++ gates and connections 

To help modelling transmission channels and packet transmissions, connections can be 
assigned three parameters: propagation delay, bit error rate and data rate. All these three 
are optional. One may specify link parameters individually for each connection, or define 
link types and use them throughout the whole model. For example, by defining the data rate 
of a connection, it is possible to model the transmission time of a packet by using the size 
attribute from the message class that represents the packet. 

The structure of the modules (both simple and compound) is defined using NEtwork 
Description (NED). The NED language supports the definition of the network’s topology in 
a modular fashion. A network description consists of a number of component descriptions 
(channels, simple/compound module types). The channels, simple modules and compound 
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modules of one network description can be reused in another network description. As a 
consequence, the NED language allows users to build their own module libraries. 

All modules can have parameters that can be used to parameterise the module topology, 
customise simple module behaviour, or for module communication. Parameters can be 
numeric values, expressions using other parameters, calling of C functions, random 
variables from different distributions, and values input interactively by the user.  

3.5 Summary 
Simulation may present itself as an appealing option for analysing the timing properties 

of EIP-based distributed systems. This chapter introduced some basic concepts and options 
on simulation software. The progress of the chapter sustained the choice for the OMNeT++ 
simulation package, to which some further details were provided. 
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APPROACHES FOR TIMELINESS ANALYSIS 
4 Approaches for Timeliness Analysis 

4.1 Introduction 
In this chapter, basic concepts of real-time systems are laid out to introduce the 

foundations of traditional real-time response time analysis, some of which may also be 
applicable to the analysis of distributed systems. The next two sections addresses concepts 
firstly associated with single processor systems, which are then adapted and extended to be 
applied in the analysis of distributed systems.  

In this chapter some aspects related to the application of simulation-based approaches to 
perform timeliness analysis will be also covered. An essential component of a simulation-
based analysis is the development of accurate simulation models and the adequate 
exploration of the produced output data. In section 4.4, both of these issues are addressed.  

4.2 Basic Concepts of Real-time Systems 
Real-time computing systems are defined as those systems in which the correctness of 

the system depends not only on the logical result of computation, but also on the time at 
which the results are produced [41]. There are various examples of real-time computing 
systems, such as command and control systems, flight control systems or robotics. 

A typical real-time computing system has a real-time program running on the system, 
which reads inputs from input devices, processes these inputs, and often produces outputs 
to be sent to output devices. The time between the arrival of an input from a device and the 
completion of the processing for that input is called the response time for the device [42]. 
The relative deadline for the device can be defined as the maximum admissible interval 
between the instant of the input arrival and the completion of the processing for that input. 
Hence, the response time for a device must be smaller or equal to its relative deadline. 

Assume that each input device is assigned a task (process) of the application program 
and that the tasks share a same processor. The problem of determining whether the system 
will meet its peak processing load, or in other words, whether no input from any device will 
be lost, becomes one of schedulability analysis of tasks [43]. 

A round-robin scheduling policy ensures that each task gets a share of the processor. 
However, such an approach may not be suitable for real-time systems. Assume the 
following example [44]: “Consider a computer controlling an aircraft. Among its tasks are 
maintaining stability and keeping the cabin temperature within acceptable limits. Suppose 
the aircraft encounters turbulence that makes it momentarily unstable. The computer is then 
supposed to adjust the control surfaces to regain stability. If we use round-robin scheduling 
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for this application, the computer may switch context partway through making the control 
adjustments in order to spend time making sure the cabin temperature is just right. The 
result may well be a crash, and the fact that the cabin is being maintained at optimum 
temperature will be scant consolation to the passengers as the airliner falls out the sky. 
What we want is to give the stability-maintenance task a very high priority, which ensures 
that when stability is threatened, all other interfering tasks are elbowed out of the way to 
allow this all-important task enough computer cycles.” 

It follows that the consideration of priority levels is crucial to a real-time computing 
system. If different inputs have different response time requirements, we need to consider 
different priority levels to schedule the related processing tasks. Consider a real-time 
system, within which several devices are connected at different priority levels to a single 
processor computer system. An input being processed will be preempted when another 
input of higher priority arrives, and will only be resumed when there is no processing 
remaining at higher priorities.  

Assume that the input from a device is saved in a buffer, until it is overwritten by the 
next input of the same device. The problem is to determine whether for a given assignment 
of priority levels, the system will meet its peak processing load (i.e. no input from any 
device will be lost). A more basic problem is how to assign devices to priorities in order to 
meet the system-processing load. 

4.2.1 Characterisation of Tasks 
There is a number of attributes related to a task in a real-time system, typically 

including the following: 

• C, the worst-case execution time (WCET) of the task;  

• T, for periodic tasks it is the minimum time between arrivals of instances of the 
same task; 

• D, the relative deadline of the task, i.e., the maximum time allowed between the 
release of the task and completion of its execution; 

• P, priority level assigned to the task; 

• B, longest time a task may be blocked by a lower priority task; 

• R, worst-case response time of a task (most schedulability analyses try to verify if  
R < D). 

To illustrate these attributes, consider a task (Γ1) that is released periodically (every 9 
time units) to perform some kind of processing. The worst-case execution time (C) of the 
task is 3 time units, and its relative deadline (D) is 6. Several instances (Γ1,1 , Γ1,2 ,…, Γ1,n) 
of task Γ1 are depicted in Figure 11. 
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Figure 11. Illustration of task attributes 

Tasks can also be characterised according to their predictability. This characteristic of 
the tasks affects their schedulability analysis. Concerning the predictability, three basic 
types of tasks can be defined: periodic, aperiodic and sporadic. 

Periodic tasks, as their name implies, are released on a regular basis. They are 
characterised by their period, their deadline and their required execution time per period. 
The deadline is often assumed to be equal to the period, i.e. the processing of an input must 
be completed, at most, before the next input from the same device.  

Aperiodic tasks are released only occasionally, and are usually triggered by an external 
event. To allow worst-case calculations to be made, a minimum period between any two 
aperiodic inputs (from the same device) is often defined. If this is the case, the task 
involved is said to be sporadic, and its period corresponds to its minimum inter-arrival time. 

Tasks can also be characterised according to their criticality, depending on the 
consequences of not being executed before their deadlines. Concerning their criticality real-
time tasks can be soft, hard or safety-critical. 

Real-time tasks are said to be soft is meeting its deadline is desirables for performance 
reasons, but missing a deadline does not cause serious damage and does not jeopardise the 
correct system behaviour. Conversly, hard real-time tasks are those whose timely execution 
is critical. If deadlines are missed, severe faults may occur in the system. If the fault is 
catastrophic, the task is said to be a safety-critical real-time task.  

4.2.2 Scheduling Tasks in Real-time Systems 
Scheduling involves the allocation of time (and resources) to tasks, in such a way that 

timing requirements (or other performance requirements) are met. Scheduling has been 
perhaps the most widely research topic within real-time systems. As a consequence, there 
are multiple taxonomies for the scheduling schemes and for the methodologies for the 
schedulability analysis. 

In a single processor computing system, a set of tasks shares a common resource: the 
processor. Schedulability analysis has to be performed to predict whether the tasks will 
meet their timing constraints.  

The schedulability analysis can be performed online or offline. In the first case, the 
schedulability of the task set is analysed at run-time, whereas in the latter it is performed 
prior to run-time (pre-run-time schedulability analysis).  
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The offline scheduling has several advantages over the online scheduling: it requires 
little run time overhead and the schedulability of the task set is guaranteed before 
execution. However, it requires a prior knowledge of the tasks’ characteristics, which 
fortunately is possible in most of real-time systems. If the tasks’ characteristics are not 
known prior to run time, schedulability analysis must be performed online.  

The most used type of offline scheduling is the priority-based approach, where no 
explicit schedule is constructed. At run-time, tasks are executed in a highest-priority-first 
basis. Priority-based approaches are much more flexible and accommodating than other 
approaches. 

4.2.3 Priority Assignment Schemes 
One of the most used priority assignment schemes is to give the tasks a priority level 

based on its period: the smaller the period (T), the higher the priority (P); that is, Ti < Tj ⇒ 
Pi > Pj. This assignment is intuitively explained by the fact that more critical devices will 
provide inputs more frequently (via asynchronous interrupts), or will be polled more 
frequently. Thus, if they have smaller periods, their worst-case response time must also be 
smaller. This type of priority assignment is known as the rate monotonic (RM) assignment, 
and the related pre-run-time schedulability analysis was firstly introduced in [45]. 

If some of the tasks are sporadic, it may not be reasonable to consider the relative 
deadline equal to the period. A different priority assignment can then be to give the tasks a 
priority level based on its relative deadline: the smaller the relative deadline (D), the higher 
the priority; that is, Di < Dj ⇒ Pi > Pj. This type of priority assignment is known as the 
deadline monotonic (DM) assignment [46]. 

Both RM and DM priority assignments belong to the group of fixed priority scheduling 
(FPS) mechanisms, in the sense that priorities do not vary along time. At run-time, tasks are 
dispatched highest-priority-first. A similar dispatching policy can be used if the task, which 
is chosen to run, is the one with the earliest deadline. This also corresponds to a priority-
driven scheduling, where the priorities of the tasks vary along time. Thus, the earliest 
deadline first (EDF) is a dynamic priority assignment scheme. Pre-run-time schedulability 
analysis for tasks dispatched according to the EDF assignment scheme was also introduced 
in [45]. 

In all three cases, the dispatching phase will take place either when a new task is 
released or the execution of the running task ends. 

In a priority-based scheduler, a higher-priority task may be released during the 
execution of a lower-priority one. If the tasks are being executed in a preemptive context, 
the higher-priority task will preempt the lower-priority one. Contrarily, in a non preemptive 
context, the lower-priority task will be allowed to complete its execution before the higher-
priority task starts execution. This situation can be described as a priority inversion due to 
non preemption (a higher-priority task is delayed by a lower-priority one). This is also 
known as blocking. 

To illustrate, both RM and EDF scheduling, consider the following task set: 
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Table 1. Example task set 

Task C (ms) T=D (ms) 
1 1 5 
2 5 12 
3 4 14 

Figure 12 illustrates a time-line of the schedule for this task set, assuming that all of 
them share a common initial release time (at time instant 0), and the tasks are preemptable. 

 

Rate-Monotonic (RM) Schedule 

Task 1  

Task 2  

Task 3 

0 10 20 

Earliest-Deadline-First (EDF) Schedule 

time (ms) 30 

10 20 time (ms) 30 

Task 1  

Task 2  

Task 3 

0  
Figure 12. RM and EDF schedule examples on 1 Processor 

4.3 Analytical-Based Timing Analysis 
Real-time computing systems with tasks dispatched according to a priority-based policy 

(only RM and DM will be considered) must be tested a-priori in order to check if, during 
run time, no deadline will be lost. This feasibility test is called the pre-run-time 
schedulability analysis of the task set. 

It can be shown that for periodic tasks, a set of tasks is schedulable if and only if there is 
a feasible schedule for the LCM (least common multiple) of the periods [47]. Moreover, it 
can also be shown that if the tasks share a common request time (known as the critical 
instant), it is a pre-run-time schedulability sufficient condition that the tasks are schedulable 
for the longest of the periods [45]. This suggests that a time-line could be used to perform 
the schedulability analysis. For instance, and concerning the example shown in the previous 
section, where the longest period is 14, Figure 12 shows that the schedule generated by both 
RM and EDF schemes are feasible for the task set (if all the tasks share a common initial 
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release time). However, time-line approaches may not be effective for systems with a large 
number of tasks. Hence, analytical methods are preferable.  

There are mainly two types of analytical methods to perform pre-run-time 
schedulability analysis. One is based on the analysis of the processor utilisation. The other 
is based on the response time analysis for each individual task. In [45], the authors 
demonstrated that by considering only the processor utilisation of the task set, a test for the 
pre-run-time schedulability analysis could be obtained. Contrarily, a response time test 
must be performed in two stages. First, an analytical approach is used to predict the worst-
case response time of each task. The values obtained are then compared, trivially, with the 
relative deadlines of the tasks.  

The utilisation-based tests have a major advantage: it is a simple computation 
procedure, which is applied to the overall task set. By this reason, they are very useful for 
implementing schedulers that check the feasibility online. However, utilisation-based tests 
have also important drawbacks, when compared with their response-time counterparts. 
They do not give any indication of the actual response times of the tasks. More importantly, 
and apart from particular task sets, they constitute sufficient but not necessary conditions. 
This means that if the task set passes the test, the schedule will meet all deadlines, but if it 
fails the test, the schedule may or may not fail at run-time (hence, there is a certain level of 
pessimism). It is also worth mentioning that the utilisation-based tests cannot be used for 
more complicated task models [48]. 

In the next sub-sections, the most relevant feasibility tests for task sets scheduled with 
fixed priority schemes for both preemptive and non preemptive contexts will be surveyed. 
Depending whether the tests are applied to the overall task set or individually to each task, 
they are classified as utilisation-based tests or response time tests, respectively. 

4.3.1 Utilisation-Based Tests 
For the RM priority assignment, Liu and Layland [45] introduced a utilisation-based 

pre-run-time schedulability test, which, when satisfied, guarantees that tasks will always be 
completely executed before their deadlines:  
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with N being the number of tasks in the system.  

This utilisation-based test is valid for periodic independent tasks, with relative deadlines 
equal to the period, and for preemptive systems. As mentioned in the previous section, 
typically the utilisation-based tests are sufficient but not necessary conditions. For instance, 
for the task set shown in Table 1, the test fails (from Equation (1), 0.90 < 0.78 is false), but 
the task set is schedulable, as can be seen by the time-line of Figure 12.  

Formulations for the utilisation-based tests with deadlines smaller than periods are not 
available, to our best knowledge. It is however possible to formulate a simple utilisation-
based test for the case of non preemptive tasks. 

In [49], the authors update the basic utilisation based test (1) to include blocking 
periods, during which higher-priority tasks are blocked by lower-priority ones, to solve the 
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problem of non-independence of tasks (for instance tasks that share resources which are 
protected by mutual exclusion):  
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where Bi is the maximum blocking a task i may suffer [49]. Equation (2) assumes that Pi+1 
≤ Pi, ∀i<N; that is, tasks are ordered by decreasing priority.  

In a non preemptive context, a higher-priority task can also be “blocked” by a 
lower-priority task. Assuming that the tasks are completely independent, the maximum 
blocking time a task may suffer is given by: 
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where lp(i) denotes the set of lower-priority tasks (than task i). 

Therefore, Equation (2) can be used as an utilisation-based test for a set of non 
preemptable but independent tasks, with the blocking for each task as given by Equation 
(3).  

4.3.2 Response Time Tests 
In [42] the authors proved that the worst-case response time Ri of a task i is found when 

all tasks are synchronously released at their maximum rate. This is known as the critical 
instant. In such case, Ri is defined as: 

iii CIR +=  (4) 

where Ii is the maximum interference that task i can experience from higher-priority tasks 
in any interval [t, t + Ri]. The maximum interference (Ii) occurs when all higher-priority 
tasks are released synchronously with task i (the critical instant). Without loss of generality, 
it can be assumed that all processes are released at time instant 0. 

Consider a task j with higher-priority than task i. Within the interval [0, Ri], it will be 
released ⎡Ri/Tj⎤ 

1 times.  

Therefore, each release of task j will impose an interference of Cj. Hence, the overall 
interference is given by: 

                                                      

 

 
1 The ceiling function ⎡x⎤  returns the smallest integer greater than or equal to x. Similarly, the floor function ⎣x⎦ is 

used to denote the larger integer smaller than or equal to x. 
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where hp(i) denotes the set of higher-priority tasks (than task i). Substituting this value back 
in Equation (4), the worst-case response time Ri of a task τi is given by: 
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Equation (6) embodies a mutual dependence, since Ri appears in both sides of the 
equation. In fact, all the analysis underlay this mutual dependence, since in order to 
evaluate Ri, Ii must be found, and vice-versa. To solve such equation, a recurrence 
relationship must be formed [50]: 
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The recursion ends when Wi
m+1 = Wi

m = Ri, and can be solved by successive iterations 
starting from Wi

0 = Ci. Indeed, it is easy to show that Wi
m is non-decreasing. Consequently, 

the series either converges or exceeds Ti (in the case of RM) or Di (in the case of DM). If 
the series exceeds Ti (or Di), the task Γi is not schedulable. 

In [50] the authors updated the analysis by Joseph and Pandya to include blocking 
factors introduced by periods of non preemption, due to the non-independence of the tasks. 
The worst-case response time is then updated to: 
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which can also be solved using a similar recurrence relationship. Bi is also as given by 
Equation (3). 

Some care must be taken using Equation (8) for the evaluation of the worst-case 
response time of non preemptable independent tasks. In the case of preemptable tasks, with 
Equation (6) we are finding the processor's level-i busy period preceding the completion of 
task i; that is, the time during which task i and all other tasks with a priority level higher 
than the priority level of task i still have processing remaining. For the case of non 
preemptive tasks, there is a slight difference, since for the evaluation of the processor's 
level-i busy period we cannot include task i itself; that is, we must seek the time instant 
preceding the execution start time of task i. 

Therefore, Equation (4) can be used to evaluate the task's response time of a task set in a 
non preemptable context and independent tasks, where the interference must be now re-
defined: 
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4.3.3 From Task to Message Schedulability Analysis 
Communication between processes on different machines in a distributed system 

requires messages to be transmitted and received on the underlying communication sub-
system. In general, these messages will have to compete with each other to gain access to 
the network medium. 

In order for hard real-time processes to meet their deadlines (in general), the access to 
the communication subsystem will be scheduled in a manner which is consistent with the 
scheduling of processes on each processor. Although the communication link is just another 
resource, there are some issues which distinguish the link scheduling problem from 
processor scheduling that are summarised below. In fact, unlike a processor, which has a 
single point of access, a communication channel has multiple points of access. While 
preemptive algorithms are appropriate for scheduling processes on a single processor, 
preemption during message transmission will mean that the entire message will need 
retransmitting. Typically, message transmissions are considered non preemptive. In 
addition to the deadlines imposed by the application processes, deadlines may also be 
imposed by buffer availability. 

Considering some analogies between, for example, task execution time and message 
transmission time or task blocking time and message blocking time, it is possible to adapt 
the tests available for the schedulability analysis of non preemptable tasks in single 
processor systems to the message scheduling for some type of networks. Examples can be 
found in [27, 51-55]. 

Holistic2 Approach 
A reasonably large distributed real-time system may contain tens of processors and 

several distinct communication channels. In these systems, one of the most challenging 
problems consists in finding end-to-end timing characteristics. For each couple of 
communicating tasks (in different processor units) there is an end-to-end timing constrain: 
the maximum time available for producing a message at the sender side, transmitting the 
message over the network and processing it at the receiver side. 

                                                      

 

 
2 Holistic, adj. relating to or concerned with wholes or with complete systems rather than with the analysis of, 

treatment of, or dissection into parts; Holism, n. a theory that the universe and especially living nature is 
correctly seen in terms of interacting wholes (as of living organisms) that are more than the mere sum of 
elementary particles [From Merriam-Webster's Collegiate Dictionary] 
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Figure 13. End-to-End communication delay 

Both the processor and the communication subsystems can be analysed so that the 
worst-case timing behaviour is predictable. To depict the several delay components 
typically involved in such analysis, consider the following example of a remote I/O reading, 
illustrated in Figure 13: the end-to-end communication delay starts when the sending task is 
released and starts competing with other running tasks on the sender-hosting computer. The 
task may suspend as soon as the message request is passed to the communications stack 
( ). Then, the message request waits in a queue (assuming a simplified protocol stack) 
until it gains access to the communication medium. This queuing delay depends on how the 
queue is implemented (first-come-first-served queue, priority queue, etc.) and how the 
MAC level behaves ( ). The message request is then transmitted. This time interval 
depends on the data rate and length of the transmission unit and also depends on the 
propagation delay ( ). (Note that if intermediate systems (e.g., switches) are used, the 
propagation delay component is more complex). 

The message indication is then queued in the remote communication stack ( ). The 
receiving task processes the message indication, and performs the actual reading of the 
required data. The response frame is produced and queued ( ). The message response will 
suffer similar types of delays. A queuing delay (again assuming a simplified protocol stack) 
in the remote transmitting queue ( ), a transmission delay ( ), a queuing delay in the local 
receiving queue ( ), and finally the time for the local task to process the response ( ). 

In terms of the response time analysis of communicating tasks, distribution brings the 
need to include the end-to-end communication delays, as one of the components of the 
overall task’s response time. This is a quite complex approach to real-time analysis, and it 
involves the provision of methodologies for the evaluation of the worst-case messages’ 
response times in the communication network, which are then “embedded” with the 
communicating task, operating system and communication stack models. 
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It is possible to reduce the difficulty of a global distributed system analysis by means of 
a very simple concept: attribute inheritance. The overall analysis can be decoupled in 
several simpler analyses of smaller subsystems. Given their attributes, these subsystems can 
be analysed by means of exact procedures that let us find the worst-case response times. By 
suitably combining these values, we can find tight bound for end-to-end computations and 
we can then compare them with the relative constrains, in order to establish the feasibility 
of the whole system. This type of analysis is called holistic analysis and has been addressed 
previously by several researchers [9, 10]. 

4.4 Simulation-Based Timing Analysis 
Developing a simulation model that accurately portray the timing behaviour of a 

distributed system, bears a number of issues that must be correctly handled. The steps 
needed for a correct simulation model development are depicted in Figure 14. 
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Figure 14. Simulation Development 
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The process begins with the development of a conceptual model, representative of the 
abstractions and assumptions about the real system. Here, special care should be taken with 
the level of detail introduced and the overall model complexity.  

The next step is to properly characterise the simulation model’s inputs, usually achieved 
by collecting data of the actual system. Using this data, the developer may choose an 
appropriate probability distribution, representative of the input process and select the proper 
distribution parameters. If it is not possible to collect system data, by using system expert 
knowledge and other available information about the nature of the process, it is usually 
possible to use one of the triangular, uniform or beta distributions to model the input 
process. 

After modelling the input process, proper goodness-of-fit evaluation of the chosen 
distributions should be performed, either by simple observations of the modelled input 
process and of the actual system, or by using statistical tests. 

With a conceptual model built, the next step is to perform the implementation of the 
model. It is advisable to use one of the many available simulation packages available, rather 
than build a simulation from scratch. As pointed out in [56], special care should be taken 
with the Pseudo-Random Number Generators (PRNGs) used, as some common 
implementations have short generation cycles, for today’s computational resources. 

The implementation of a simulation model should entail a verification step for backing 
up the correctness of the implementation of the model. This is whether the implementation 
reflects properly the details and assumptions included in the model. 

The validation of the model basically consists of the corroboration of the input-output 
transformations of the model. This may comprise comparing simple observations of the 
system with the model, verification of assumptions, using existing theory and other relevant 
results or using quantitative techniques (like distribution fitting, homogeneity tests or 
sensitivity analysis) to validate the simulation model components.  The validation of the 
simulation model may also include the comparison of the results from the simulation model 
with the results of an analytical model and investigate if the two are coherent. 

Adhering to the steps described above do not guarantee a successful simulation 
exploitation, but are indeed a good sequence of actions towards it.  

4.4.1 Meaningful Results from Simulation Output Data 
One important aspect of any simulation study is the careful analysis of the output data 

results, which is often an overlooked aspect [56]. Since this dissertation will describe 
simulation models that have one or more random variables as input, these are said to be 
stochastic simulation models, and, by its nature, a stochastic simulation model will also 
produce random outputs. Thus, simulation has to be regarded as a computer-based 
statistical experiment, and to have any meaning, appropriate statistical techniques must be 
employed to analyse the simulation experiments. 

Moreover, the data resulting from a simulation cannot be directly analysed using 
traditional statistical methods, since most of these apply to Independent and Identically 
Distributed (IID) data. This is an important topic of concern for the remainder of this text. 
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Let us consider a simple example of a waiting queue, with a random service time. The 
waiting time experienced by the first user will always be zero. On the other hand, the 
waiting time of the second user will depend on the departure of the first one, and so on. If 
we are interested in studying the waiting time in the queue, it is easy to observe that the 
distribution of these times is neither identically distributed nor independent.  

A method commonly used to overcome this problem is to make observations from the 
results of multiple and independent simulation runs (or simulation replicas). Typically this 
is achieved by making multiple simulation runs with the same initial conditions and 
parameters, but yet different seeds for the random numbers used to drive the simulation 
through time. In this way, it is possible to obtain independent and identically distributed 
variables. Hence, it is possible to make estimates for the variables of interest, such as the 
average delay observed, the number of messages dropped, or the maximum response time, 
just to roll a few examples. 

Next, a brief survey of the typical formulations for obtaining an estimator for a mean 
value, as well as its respective confidence interval will be presented. Another aspect of 
concern is how to get confidence intervals with some specified precision. These are crucial 
pieces of basic statistical reasoning used in the majority of the approaches for simulation 
output data analysis. 

4.4.2 Statistical Ground for the Analysis of Simulation Output Data  
Suppose we would like to obtain an estimate for the mean of an output variable. By the 

way of example, let us say it is the mean message delay in queue to access a 
communication medium. For a matter of simplicity, consider that we would like to observe 
this delay during a defined period, because the system is shutdown or restarted after that 
period (e.g. the case of a system that is disconnected at the end of a working day) – a 
terminating simulation.  

One run of the simulation will produce one estimate for the mean message delay. 
Noticeably, the value of just one sample of a random process has no significance by itself. 
However, executing multiple runs of the simulation will provide a set of mean delay values, 
characterised by some distribution. Moreover, it will be IID, as pointed out. The samples 
mean (remember that, in this example, our samples are the set of mean delays observed for 
each simulation replica) is a natural estimator of the (unknown) true mean message delay.  

But, how reliable is this estimate?  

If we would make another set of simulation replicas, the result would, most likely, be 
different. Indeed, an estimate without an indication of its precision is of little value. 

However, to come up with this type of conclusions, one would have to know something 
about the distribution of the sample. There is a basic, but very useful and important concept 
in statistics, called the central limit theorem. This theorem basically states that the sum and 
the average of many random values present a distribution close to normal. Typically, a 
normal approximation is sufficiently good if about 30 or more values are used in the sum 
(or average) [57]. Then, well-known methods can be used to draw confidence intervals 
from normal distributions. 
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There is, however, an important aspect to point out. The standard procedures for 
inference are developed for situations where the standard deviation for the entire population 
is known. As usually the entire population is unknown, it is also need to estimate the 
standard deviation from the available data, in which case, the statistic will not have a 
normal distribution, but a t-distribution.  

For the sake of completeness, let us now lay down some basic statistics, applied to the 
estimation of the model true characteristics.  

Suppose that X1, X2, … Xn are IID random variables with a mean µ (in our example, the 
mean message delay in queue to access a communication medium) and a variance σ2. Our 
primary objective is to estimate µ. The sample mean ( )(nX ), is an unbiased (point) 
estimator of µ, and is defined by: 
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That is, the expected value of )(nX is µ: [ ] µ=)(nXE . If we perform a very large number 
of independent experiments, each resulting in a )(nX , their average will be µ.  

While )(nX  is the estimator of µ, in a similar way, the sample variance (S2(n)) is an 
unbiased estimator of σ2: 
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As discussed, it is important to have an assessment of the estimation precision. The 
usual way to do this is to construct a confidence interval. An approximate  
100(1 - α)% confidence interval for µ is given by: 
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nStnX n
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The estimate ( )(nX , in our case) represents the guess for the value of interest. The 
margin of error (terms after the ± sign) gives a measure on how accurate the estimation is, 
based on the variability of the estimation.  

The confidence level reflects the amount of confidence that, in the long run, this 
approach will be able to approximate the true value of interest. As we increase the 
confidence level, the confidence interval gets wider. It can be shown that to cut the length 
of the confidence interval in half, four times more samples are required. 
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4.4.3 Non-Terminating Simulations 
So far, we have been concerned with a finite set of samples extracted from a terminating 

simulation. Nevertheless, non-terminating simulations are an important class that must be 
target of our attention. Indeed, often our systems of interest will not have a terminating 
event, and we will probably be interested in analysing the system’s behaviour in the long 
run. 

There are several subtypes of non-terminating simulations. In this case, a subtype where 
the outputs of the simulation model tend to stabilise; that is, the system reaches a steady 
state will be considered. A measure of performance for such simulation is said to be a 
steady-state parameter. We will then focus our attention on analysing non-terminating, 
steady-state parameters and thus assuming that, as the amount of data becomes large, 
distributions will converge to a common distribution in the steady-state. 

The analysis of steady-state parameters raises a very important problem, which is how 
to choose the simulation data that actually represents the steady-state. Mostly due to the 
choice of starting conditions, the initial output data of the simulation is usually not very 
representative of the steady-state behaviour. This period, affected by the initialisation bias, 
is usually referred to as the warm-up period. Using data from this period for the estimation 
of system’s steady-state parameters may yield deceptive results. 

To circumvent the warm-up period problem, one may simply resort to very long runs, 
such that the data from the initial phase has a negligible impact, or to start the simulation in 
a state supposed to be close to the steady-state. Effectively, these methods have some 
serious practical impairments, thus somewhat more elaborate methods are commonly used. 
These methods typically ignore data from the warm-up period, utilising some techniques, 
based on the assumption that the variance of the samples is substantially lower in the 
steady-state than in the warm-up period, to detect when it ends.  

The replication approach described earlier may still be used in the context of non-
terminating simulations. All what is necessary is to define how to extract the steady-state 
means from each simulation replica (Xi used to compute the sample mean in Equation (10)). 
Suppose that we make n simulation replicas, each of length m, where m is much larger than 
l (the length of deleted data used to eliminate the impact from initial conditions). As a rule 
of thumb, m-l should be at least 10 times the size of l. In the context of non-terminating 
simulations, this method is commonly called replication/deletion. 

Let Xi be IID variables given by the mean in each simulation replica i, from the set of 
values collected between l and m (Yij): 
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Similarly to the terminating case, Equation (10) gives an approximately unbiased point 
estimation for the steady-state mean µ, and a confidence interval may be obtained with 
Equation (12). 
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An informal description of the method may be as follows: 

1. define the size of the initial phase l from test simulation runs; 

2. perform n independent simulation replicas of length m (with m much larger than l); 

3. for each simulation replica i, compute the mean of all observations after the initial 
phase l; 

4. apply usual point estimate and confidence intervals on the IID means obtained 
(given by Equations (10), (11) and (12)). 

As referred previously in Section 4.4.2, the confidence interval depends on the variance 
of Xi, which will be unknown when the first n simulation replicas are performed. If we 
make a fixed number of replications, the resulting confidence interval may be too wide for 
our particular purpose. However, also as pointed out in Section 4.4.2, we can decrease the 
length of the confidence interval by a factor of 2, by performing 4 times as many 
replications. 

There are other methods that apply some variations. Instead of achieving independence 
trough multiple simulation runs, one can perform one long simulation run and try to obtain 
independent observations from subsets of data. The method of batch means [58], similarly 
to the replication/deletion, attempts to obtain independent observations, but, in this case, the 
single simulation run is divided into batches, where a batch takes the role of a single 
replica. It can be shown that, for a sufficiently large number of batches, the mean of the 
several batches will be approximately IID normal. 

One of the most relevant advantages of this method is that it only has to go through one 
warm-up phase, on other hand, a major problem is on choosing the batch size m, or 
equivalently, the number of batches k. A number of guidelines extracted from research 
literature, and a general recommended strategy may be found in [58]. 

In the group of methods based on one long simulation, other methods may be 
encountered [28]. These methods, such as the autoregressive method or spectral analysis, 
try to use estimates of the autocorrelation structure of the underlying stochastic process to 
obtain an estimate of the variance of the sample and then to construct a confidence interval. 
For sake of simplicity, the reader is referred to the literature [28, 58] for further information 
on other methods. 

All the procedures described to this point are, usually, classified as fixed-sample 
procedures, where the sample sizes taken (the whole simulation, in the case of 
replication/deletion or the batch, in batch means) are of a fixed size. Generally, some 
conclusions may be established for all of these fixed-sample procedures [28]: 

• if the total sample size is chosen too small, the actual coverage may be lower than 
the desired; 

• the appropriate choice of the total sample size is extremely model dependent and 
impossible to choose arbitrarily. 

Evidently, no procedure that sets the run length before the simulation begins will always 
produce a satisfactory confidence interval. A sequential scenario where the simulation’s 
end is determined by a relative statistical error that is verified in consecutive checkpoints is 
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a more interesting approach. Sequential methods are commonly based on the same methods 
for non-terminating simulations as batch means or spectral analysis, in conjunction with 
absolute or relative-error stopping rules. These procedures are more complex, requiring 
computing the estimates at several points of the simulation to check if the stopping rule has 
been satisfied, which can be computationally very expensive. Additionally, these 
procedures may not be easily applicable when multiple measures of performance are 
needed, and, because of random nature of simulation, the relative stopping rule can be 
accidentally satisfied, resulting in premature termination of the simulation, and on wrong 
estimation results. 

Another typical problem with sequential procedures is that they are not very popular 
among existent software packages. A simulation package supporting sequential procedures 
is Akaroa2, designed at the University of Canterbury, New Zealand [56]. Besides the 
problems described, sequential procedures are recognised as a practical approach allowing 
control on the error of the final results of stochastic simulations [56]. 

4.4.4 Other Measures of Performance  
All the previous methods seek to obtain a mean value for the output point estimator. 

What about other kind of measures? Consider that we would like to estimate the probability 
of a value belonging to an interval, for example, imagine the case of investigating the 
probability that a queue length is greater than k messages. Another different performance 
measure is a quantile. Quantiles describe the level of performance that can be delivered 
with a given probability p. The next sub-section outlines some procedures to extract such 
measures of performance like proportions, probabilities or quantiles.  

Probabilities and Quantiles 
Suppose we need to estimate the steady-state probability (p) of the mean message 

delays in queue to access a communication medium being less than a value x. The variable 
under analysis may be represented by 1 if the queue delay exceeds the value x, and 0 
otherwise. 

Making p = P(Y∈ B), where B is a set of real numbers smaller than x, and Y is the 
original steady-state random variable, we are just in the presence of a special case of 
estimating the mean, by letting the random variable Z be defined by:  
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It can be shown that estimating p is equivalent to estimating the steady-state mean for 
the expected value of Z (E(Z)). 

A performance measure that does not fit in the same reasoning is a quantile. For 
instance, if the variable represents the delay in queue that a client experiences, the 0.90-
quantile is the value x such that 90% of all messages experienced a delay shorter than x.  

Estimating quantiles is both conceptually and computationally (in terms of number of 
observations required) a more difficult problem than estimating the steady-state mean. 
Additionally, most of the procedures for estimating these performance measures are based 
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on order statistics and require storage and sorting of the observations. Nevertheless, the 
general reasoning is similar to the one for obtaining the interval estimator for a steady-state 
mean. 

An example taken from [59] points-out one major problem with quantile estimation 
describes that, for the steady-state estimation of 0.99 quantile of waiting times, an estimate 
with relative a precision of 10% required about 500.000 observations, and a 0.999 quantile 
needed a sampling size of approximately 2.300.000. Because quantile estimation require 
storage and sorting of observed values, obtaining small quantile estimations, with a good 
accuracy is often impractical. However, this is a problem under investigation, and several 
techniques already exist that do not require storage and sorting have already been attained 
and implemented. In [60], a number of such approaches are presented and evaluated. 

4.5 Summary 
The basis for the timeliness approaches addressed in this dissertation was presented in 

this chapter. Basic concepts of real-time systems were laid out to introduce the foundations 
of traditional real-time response time analysis applicable also to the analysis of distributed 
systems. The first two sections addressed concepts associated with single processor 
systems, which are then adapted and extended to be applied to the analysis of distributed 
systems.  

The second part of this chapter addressed issues related to the exploitation of a correct 
simulation-based study. Both the proper development of simulation models and the grounds 
for extracting performance measures from the produced output data were approached. 

The concepts brought forward in this chapter will be the basis for the models to be 
introduced in the subsequent chapter of this dissertation, for the analytical worst-case and 
for simulation-based analysis in Chapter 5 and Chapter 6, respectively. 
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C h a p t e r  5  

WORST-CASE BASED ANALYTICAL MODEL 
5 Worst-Case Based Analytical Model 

5.1 Introduction 
An effort to formulate an analytical formulation to find end-to-end response times in 

EIP based distributed systems is provided in this chapter. This model builds upon the 
response time analysis presented in the previous chapter. Using the concept of attribute 
inheritance, it considers a number of worst-case assumptions to derive the end-to-end 
response time bounds. 

While this is a very interesting and useful approach to start with, it basically leads to an 
additive formulation built on top of several worst-case assumptions, thus potentially 
exacerbating the levels of pessimism. This level of pessimism is easily foreseen in a 
distributed system, where the probability of concurrence of independently generated worst-
case situations is realistically extremely low. Nevertheless, it is important to stress that the 
decoupling of the diverse latency components brought by the producer/distributor/consumer 
model underlying EIP corroborates the validity of tackling the problem in such a 
guaranteed worst-case fashion. 

5.2 End-to-End Latency Formulation 
The decoupling of the diverse latency components brought by the 

producer/distributor/consumer model underlying EIP makes possible to break down the 
overall transaction, described in Section 2.3.5, into two independent transactions. 
Considering the assumptions outlined in Section 2.3.6, the analytical formulation for 
computing the worst-case end-to-end delay of a transaction can thus be defined as follows: 
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In brief, the delay associated to an end-to-end transaction results from the delay 
components associated to two independent transactions (∑ term), added to the worst-case 
controller task response time (Rτi) and the input filter (fdi). 

In Equation (15) Lim
sn→sw denotes the worst-case time that a message m takes to arrive 

from a source node sn to a switch sw. In the case m = input, sn is considered to be the node 
that contains the input module related to the overall transaction i. In the case m = output, 
then sn is considered to be the node that includes the controller responsible for processing 
the output related to overall transaction i. Thus: 
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where TiRPIinput denotes the time span corresponding to the periodicity defined for the 
message m connection (input RPI) related to overall transaction i, Qbm

sn denotes the worst-
case delay caused by access contention in node sn backplane, and Qeam

sn denotes the worst-
case delay for message dispatching at the Ethernet adapter of node sn. 

Similarly, Lim
sw→dn corresponds to the worst-case delay a message m may experience 

from the switch sw to the destination node dn. In the case m = input, dn is considered to be 
the node that contains the controller module related to the overall transaction i. In the case 
m = output, dn is considered to be the node that includes the output module related to 
overall transaction i. Therefore, it follows that: 
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where TiRPIinput denotes the time span corresponding to the periodicity defined for the 
message m connection (input RPI) related to overall transaction i. 

In (15), Lim
sw denotes the worst-case relaying delay a message may experience at 

Ethernet switch sw. This latency includes the time taken by the switch to relay message m 
to the corresponding output port, and the queuing delay the message may suffer at the 
output port. This latency will be reasoned out later on in a separate sub-section. 

Finally, and before going through further details, a few words on the computation of 
Rτi. Typical EIP controller modules support fixed priority scheduling. Therefore, it is 
possible to obtain the worst-case response-time for the task associated to overall transaction 
i (Rτi) by applying well-known response time analysis. 

5.3 Latency Introduced by the EA (Qeam) 
For the sake of simplicity, a rough characterisation is adopted for analysing the latency 

introduced by the Ethernet Adapters (EA). Messages are assumed to be handled in an on-
demand fashion: as soon as a packet fully arrives at the network interface, a “packet 
arrived” interrupt is raised on the host processor. The interrupt handler releases a task 
which copies the data from the network buffer, performs the necessary delivery operations 
to a task that, in turn, will encapsulate the data and transmit it to the remote Ethernet 
address. Some delay components (Figure 15) are considered, such as the delivery delay of 
the message ( ), the generation delay of the encapsulated message ( ), the possible 
queuing to deliver it to the Ethernet network interface ( ), and, finally, a transmission and 
a propagation delay ( ). The worst-case aggregating all these latencies will be denoted as 
Dea; that is, the worst-case processing delay for any message being processed at the 
particular Ethernet adapter of node ea. Note that ea will correspond to sn or dn, depending 
on the formulations under consideration (Equations (16) or (17)). 
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Figure 15. Controller: Message delay components 

Therefore, a simple worst-case formulation of the delay introduced by the EA considers 
that a particular message m will be processed only after all possible contending messages 
(ncm

ea) are processed: 
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5.4 Latency Introduced by the Backplane (Qbm) 
Figure 15 also illustrates other components contributing to the overall worst-case 

latencies. The generation delay introduced by the task processing the related output object 
to execute and generate the packet ( ) (this corresponds to Rτi). The access delay, when 
sending the message to the backplane of the Controller ( ) (Qbm) and the propagation 
delay in the backplane ( ). The latter will be, for now, neglected and some reasoning about 
the second will now be exposed. 

The Backplane access medium is based on a time division concept (TDMA-Time 
Division Multiple Access). In this case, it divides the transmission time between each 
connection producing data to the backplane. The access to the media is ordered by time, 
such that each connection is assigned a time-slot in a cyclic schedule.  

Connection 1 Connection 2 Connection 3 
… 

Connection 1 

… 

Time-slot 

Connection 2 

Communication cycle  
Figure 16. Backplane Medium Access Control Scheme 

Considering that the Backplane in each node nod is divided in fixed time-slots, with 
duration tsnod, one for each connection producing data to the backplane. These time-slots 
are assumed to be larger than the time needed to transmit the largest message transferred in 
the node’s backplane, including overhead. 

Considering the worst-case situation when a message arrives just a fraction of time after 
its connection was served. In such case, the message must wait an entire communication 
cycle, until it is transmitted. This can be effortlessly represented by:  
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where the queuing time in the backplane is defined the number of connections producing 
data to the backplane (ncbm), multiplied by the time taken to transmit each message (tsnod).  

5.5 Latency Introduced by the Switch (Lisw) 
In a preliminary analysis a switch that implements priorities will be contemplated, based 

on classification of the Ethernet frames. All the traffic in the network is assumed to be 
characterised, with well defined periodicities. It is also considered that, under a controlled 
load the switch will introduce constant switching delay. If traffic is sent to an output port at 
a higher rate than its capacity, packets must be queued. The following formulation may 
give the worst-case queuing time in a switch: 
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where, cp(m) is the set of messages from connections going out through the same switch 
port as message m. Csj is the time to transmit a message j, including the inter-frame delay 
(being j from the set of messages given by cp(m)). This also includes the time to transmit a 
message m itself (Csm).  

Ism will be the sum of the maximum blocking time a message may experience, 
including the blocking by messages of equal priority, and the interference from higher 
priority messages: 
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This formulation considers a first-come-first-served policy between messages of 
equal priority, to account with the possible aggregation of priorities due to the reduced 
number of priorities supported in standard implementations. In Equation (21), neq(m) is the 
number of messages with priority equal to m, and Dsl includes the latency introduced by 
the switch to classify and relay the frame to an output port. More sophisticated formulations 
have been tackled previously, which could be considered into this analysis [61, 62]. The 
formulations used here are for the sake of simplicity. 
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5.6 Numerical Example 
For the purpose of instantiating the proposed formulation, a scenario with eight end-to-

end transactions in a 100Mbps Ethernet network was setup (Figure 17).  

 

Remote IO 3 Remote IO 2 Remote IO 1 

Controller 1 

Ethernet Switch 

EC

E I E O E O I

Transactions 1, 2, 3 Transactions 4, 5 Transactions 6, 7, 8 

O

 
Figure 17. Example scenario 

The Controller module has two tasks processing their input data. Task τ1, (Rτ1=2ms) 
processes input data from connections 1, 2, 3, 4, 5, while τ2 (Rτ2=4ms) is processing the 
input data from connections 6, 7, 8. Table 2 includes some parameters necessary for the 
calculations. The worst-case latencies resulting from this scenario are given in Table 3. 

Table 2. Assumptions for device parameters 

Parameter Dea Dsl Interframe delay ts∀nod 

Value (ms) 0.20 0.011 9.6E-04 0.05 

Table 3. Transactions response time results 

Input Output  
Tr. RPI 

(ms) 
Size  

(bytes) Lisn→sw 

(ms) 
Lisw 

(ms) 
Lisw→en 

(ms) 
Lisn→sw 

(ms) 
Lisw 

(ms) 
Lisw→en 

(ms) 

Ri  
(ms) 

1 5 48 6.50 0.05 4.00 9.00 0.05 1.25 22.85 
2 7 46 8.50 0.06 4.00 11.00 0.06 1.25 26.87 
3 10 50 11.50 0.07 4.00 14.00 0.07 1.25 32.90 
4 25 48 26.25 0.08 4.00 29.00 0.07 1.25 62.65 
5 30 48 31.25 0.09 4.00 34.00 0.08 1.25 72.67 
6 45 55 46.50 0.11 4.00 49.00 0.08 1.25 104.94 
7 75 46 76.50 0.12 4.00 79.00 0.09 1.25 164.96 
8 150 60 151.5 0.13 4.00 154.00 0.10 1.25 314.98 
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5.7 Summary 
This chapter provided an effort to formulate a mathematical model enabling to find end-

to-end response times in Ethernet/IP based distributed systems. This model builds upon the 
response time analysis presented earlier in Chapter 4, considering a number of worst-case 
assumptions to derive the end-to-end response time bounds. The analytical formulations to 
compute each of the delay components were presented along with an example scenario 
where the overall approach is applied. 
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6 Simulation Based Timing Analysis of EIP Networks 

6.1 Introduction 
An EIP simulation environment was developed using the OMNeT++ discrete-event 

simulation platform. The simulation model developed from scratch for EIP is composed of 
three basic components (nodes), mapping on the main EIP devices: a Remote IO, a 
Controller and an Ethernet Switch, described earlier in Section 2.3.4. Each of these basic 
nodes can be instantiated into several different device models, with different particular 
characteristics, since modularity and parameterisation are considered into the design to a 
sufficient extent. In the next subsections, further details are provided concerning the model 
implementation. 

6.2 The Remote IO Node 
The Remote IO (RIO) is composed of several IO modules and an EIP Adapter, which 

communicate through a backplane, using CIP packets. The IO modules contain the several 
input/output connections of the device. Typically, each IO module will act as an Input or 
Output module, but not as both at the same time. The Ethernet Adapter is responsible for 
relaying messages between the Backplane and the Ethernet network. CIP packets are 
eventually (for the case of a consumer outside the node) encapsulated into UDP packets 
inside the EIP Adapter (ethIPAdapter in Figure 18). 

 
Figure 18. EIP simulation model hierarchy in OMNeT++. 

The Backplane is a simulation module that exists both at Controller and RIO nodes. For 
simulation performance, at initialisation time the Backplane uses the information about the 
data connections produced/consumed at each module to build a table with information on 
the gates where to deliver each of the configured connections. Figure 19 provides a sample 
of NED code defining the Backplane OMNeT++ simple module. A simple OMNeT++ 
module is declared with the keyword simple, followed by the module’s name. Included in 
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the declaration are the OMNeT++ simple module’s parameters and gates. The gates of an 
OMNeT++ module define the entry points of the module. For the example of the Backplane 
module, an array of input and output gates are defined, where each pair of input and output 
represents a Backplane interface connecting to a node’s module. 

simple Backplane 

    parameters: 

  tTableTime : numeric,  

  frameTime  : numeric,  

  timeDivison: bool;   

    gates: 

        in: in[];        

        out: out[];      

endsimple 
 

Figure 19. Backplane NED definition. 

The Backplane simple module has the parameter tTableTime, which defines the transmit 
table time, used for the time division multiple access (TDMA) protocol used as backplane’s 
MAC protocol. The parameter frameTime concerns the time a message takes to be 
transmitted in the backplane, and the parameter timeDivision specifies whether the time 
division protocol behaviour should be precisely simulated or simplified. The Backplane 
module simulates the behaviour of a TDMA contention schema where access to the 
communication medium is equally distributed to the several producing connections 
delivering data to the backplane. Nevertheless, and because this simulation approach of the 
backplane can introduce a great amount of events, it is possible to disable this behaviour. 
The alternative will then be to insert a variable delay, as a function of the number of 
connections that send messages to the backplane.  

The EIP Adapter is responsible for relaying messages to/from the Ethernet network. It 
receives the CIP messages from the Backplane and, in the CIP Bridge Layer 
(cipBridgeLayer in Figure 18) encapsulates them into UDP packets which are passed down 
to the Network Layer of the UDP/IP stack. In the opposite direction the packets are 
retrieved from the UDP/IP packet and delivered to the Backplane. 

The EIP Adapter encloses the delays introduced to perform the encapsulation of the 
messages, to access the network and the delays resulting from the concurrent access to the 
adapter resources. Figure 20 illustrates the NED definition of the Ethernet Adapter 
OMNeT++ module (a compound module). Like an OMNeT++ simple module, a compound 
module is composed of the module’s parameters and gates. Additionally, it has to include 
its sub-modules and the connections between the sub-modules and gates. 

Two parameters are used. The connectionIDProducedList and the 
connectionIDConsumedList parameters are used for listing the CIP connection identifiers of 
the connections produced and consumed in the node’s modules connected to the backplane. 
The sub-modules of an EthIPAdapter module are the CIP Bridge Layer (cipBridgeLayer 
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sub-module) and Network Layer (networkLayers sub-module). The connections 
implemented (refer to the NED code sample in Figure 20) are between these two layers and 
the input/output gates from the backplane and the Ethernet network. 

 
module EthIPAdapter 

    parameters: 

        connectionIDProducedList : string,  

        connectionIDConsumedList : string;  

    gates: 

        in: from_backplane; 

        out: to_backplane; 

        in: from_eth; 

        out: to_eth; 

    submodules: 

        cipBridgeLayer: CIPBridgeLayer; 

        networkLayers: NetworkLayers; 

    connections: 

        from_backplane --> cipBridgeLayer.from_bp[0]; 

        to_backplane <-- cipBridgeLayer.to_bp[0]; 

        networkLayers.to_application --> cipBridgeLayer.from_ntw; 

        networkLayers.from_application <-- cipBridgeLayer.to_ntw; 

        from_eth --> networkLayers.from_phy; 

        to_eth <-- networkLayers.to_phy; 

endmodule 

 
Figure 20. EthIPAdapter NED definition. 

Each of the IO modules (labelled IOModule1, IOModule2, IOModule3, etc., in Figure 
18) inside a node and connected to the Backplane contains a CIP Layer, responsible for 
managing data transfers to/from the IO Connections. The IO Connection can behave either 
as an output or input connection, and each IO Module may have several input or output 
connections connected to its CIP Layer (Figure 21). 
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Figure 21.  OMNeT++ EthIPIOModule composition. 

When an IO Connection is doing the task of an input connection, it receives data from a 
data input, which generates input data at a defined periodicity (this data input models the 
input signals of an input connection). At a defined Requested Packet Interval (RPI), the IO 
Connection constructs a CIP data item from the last received data, and sends it to the CIP 
Layer. When an IO Connection is acting like an output connection, it receives data from the 
CIP Layer, which is delivered to a data output, after a parameterised hardware delay. This 
is illustrated in Figure 22, which provides the C++ code of the message handler from the 
IOConnection class. 

 
void IOConnection::handleMessage(cMessage *msg) { 

 if (msg->isSelfMessage() == true && inputModule == true) { 

  // at rpi, send input data and schedule next rpi 

sendInputData(); 

if (((simtime_t)*rpi) > 0) 

 scheduleAt(simTime()+((simtime_t)*rpi), msg); 

} else { 

 if (inputModule == true) { // acting as an input 

  // discard previous dataItem and store new one 

  if (dataItem != NULL) delete dataItem; 

   dataItem = (CIPDataItem*) msg->dup(); 

  } else // acting as an output 

  sendDelayed(msg->decapsulate(),((simtime_t)*asicDelay), "out"); 

  delete msg; // After finishing with a message, it is released 

} 

} 
 

Figure 22.  IOConnection class message handler C++ code. 

The data input generators (dataInput1, dataInput2, ..., in Figure 22) impersonate the 
signals applied at the input pins of the IO. They are parameterised by the length of the data 
generated and the periodicity of the data generation, and by two delays introduced after the 
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generation of the input (a hardware delay and a filter delay). OMNeT++ supports defining 
any of these parameters as a user-defined randomly distributed function. These parameters 
can be either defined in the NED code of a compound module, in which case it will be the 
same for all instances of this compound module, or defined in a special initialisation file 
that may assign the parameters individually for each module in the simulation. 

Figure 23 exemplifies the definition of the dataInput (NED code) parameters in an IO 
module: a random variable with a uniform distribution in the interval [100, 150] 
milliseconds (highlighted code line in Figures 23 and 24). 

 
module EthIPIOModule  

… 

    submodules:  

        dataInput: Input[numInputs];  

            parameters:  

                hwDelay = 200 us,  

                dataLength = 22, 

      filterDelay = 0 ms,  

                period = uniform (0.1, 0.15); 

… 

endmodule 

 
Figure 23.  OMNeT++ EthIPIOModule NED code for parameter configuration. 

Figure 24 illustrates the alternative setting of the same parameters through an 
initialisation file, for a particular IO module instantiation (ioModule1), inside of a RIO node 
(ethIPIO1), within a network (ethIPNetwork1). 

 
ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].hwDelay = 200 us 

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].dataLength = 22 

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].filterDelay = 0 ms 

ethIPIO1.ioModule1.dataInput[0].period = uniform(0.1,0.15) 
 

Figure 24.  EthIPIOModule parameter configuration through initialisation file. 

6.3 The Controller Node 
The Controller node is, in its structure, similar to the RIO node. The Backplane, the EIP 

Adapter and IO modules are exactly the same modules as described previously for the 
Remote IP node. Of course, it is possible to parameterise each of the modules differently, 
and therefore manipulate their actual behaviour. 

There is however a module that must be specified for the particular case of Controller 
nodes: the Controller module (Figure 25). In an actual EIP system, the controller module is 
responsible for executing the tasks performing the control functions. 
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Figure 25.  OMNeT++ Controller module composition 

The Controller was modelled reusing some OMNeT++ modules described earlier: the 
IO Connection modules and the CIP Layer. The controllerInputConnection module 
receives the data to be delivered to the ControllerTask module, corresponding to an output 
connection at the remote source node. The output data generated by the controller task is 
delivered to the controllerOutputConnection module. The ControllerTask (worst-case) 
response time is a parameter which is a time span introduced between the reception and the 
generation of data. This parameter can be defined has a random function that best models 
the response time for each controller task. 

6.4 The Switch Node 
The Switch node models the delays introduced by an Ethernet Switching component. 

For the purpose of this simulation, it is only necessary that the Switch recognises multicast 
groups and deliver the frames received in an appropriate manner. The Switch model is 
composed of several ports that connect to the nodes in the network. Because there is a port 
in each direction, the Ethernet medium is assumed to be full-duplex. 

The Switch node is a simple OMNeT++ module. The NED definition of the Switch 
OMNeT++ module is rather simple, and is given in Figure 26. It is similar to the Backplane 
OMNeT++ module, since it has an array of input and output gates, in which each pair 
represents the interface with each connecting modules (the switch port). 

 
simple Switch 

    parameters: 

        nodename : string, 

        switchDelay : numeric; 

    gates: 

        in: in[]; 

        out: out[]; 

endsimple 
 

Figure 26.  Ethernet Switch NED definition. 
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OMNeT++ offers a rather convenient manner of defining channel transmission 
characteristics. It is possible to define the characteristics of the connection between any two 
modules by using a predefined channel. A channel is defined with its name, preceded by the 
keyword channel. A channel may be assigned with the attributes delay, error and datarate. 
The example code depicted in Figure 27 corresponds to the definition of a 100 Mbit/sec 
Ethernet channel with a normally distributed delay, with mean value of 150 µs and a 
standard deviation of 50 µs. The connecting channels model the transmission delays and 
queue the messages whenever concurrent access to the medium occurs. 

channel ethernet  

    delay normal(0.00015,0.00005);  

    datarate 100*10^6;  

endchannel 
 

Figure 27.  Ethernet Channel definition in OMNeT++. 

To simplify the multicast delivering process, the connection identifier of a producing 
connection is directly mapped into the last octet of an IP Multicast Address. For example, 
for a connection with the identifier 128, the IP Multicast Address would be constructed 
with a user defined prefix and the last octet being 128; that is, for a prefix of 239.0.0., the 
connection with identifier 128 would be mapped to the multicast group with address 
239.0.0.128.  

Because the rules defined by multicast Ethernet MAC address mapping are applied [63], 
the Ethernet frames actually contain the connection identifier mapped into the multicast 
groups. In this way, it is possible for the Switch to simply construct, at initialisation time, a 
list of all producing/consuming connection IDs for each connected node. At run time, the 
Switch module will merely compare the connection identifiers of the received frames with 
the ones in the list for each node, swiftly delivering copies of the received frame to all 
nodes that belong to the multicast group. The Switch is parameterised by a delay that 
represents the time taken to process the frames, which can also be defined as a random 
function. 

In order to provide some insight into the obtainable results with this modelling and 
simulation approach for EIP-based distributed systems, an example is presented. The results 
of its simulation and how they could be analysed are then discussed in this section. Note 
that we are aiming at obtaining an estimation of the worst-case end-to-end response time 
for a number of transactions. A primary goal is to consider some fundamental aspects about 
the analysis of the simulation results. 

6.5 Example Scenario 
The example system is constituted of three RIOs, one Controller and an interconnecting 

switch (Figure 28).  
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Figure 28.  Simulated system depiction. 

The Controller node is composed of one IO module and two Controller modules. The 
first RIO includes four IO modules, two for output and two for input. The second RIO also 
includes four IO modules, three for input and one output. Finally, the last RIO contains 
three IO modules, two for input and one output. 

The system has nine end-to-end transactions (analogous to the end-to-end transaction 
described in Section 2.3.5) between the RIOs and the Controller. This results in a total of 
eighteen connections, half from the RIOs to the Controller (Input direction) and the other 
half, from the Controller to the RIOs (Output direction). 

Table 4. End-to-End transactions 

Transaction Size 
(Bytes) 

RPI 
(ms) 

Connection: 
Input Direction 

Connection: 
Output Direction 

1 46 10 131 141
2 46 7 132 142 
3 46 25 133 143 
4 46 20 134 144 
5 46 55 151 161 
6 46 80 152 162 
7 46 75 153 163 
8 46 200 171 181 
9 46 350 172 182 

Table 4 presents the size, periodicity and identifiers of the system’s connections, 
whereas Tables 5-7 provide the details about the mapping of connections to the system 
modules.  

As an example, Transaction 8 is initiated at the IOModule3 of RemoteIO1 (connection 
171) with an RPI of 200 ms (Table 5).  It is delivered to module 2 of the Controller (Table 
6), where the data is processed, and the corresponding output is generated (connection 181). 
This connection is then sent to the IOModule2 of RemoteIO3 (Table 7). The RPI of the 
output connections is equal to the corresponding input connection.  
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Table 5.  Input Connections 

Input 
Connection Node Module 

ID RPI (ms) 

171 200 
RIO 1 IO module1 

172 350 

IO module 1 131 10 

IO module 2 132 7 

133 25 
RIO 2 

IO module 3 
134 20 

151 55 

152 80 RIO 3 IO module1 

153 75 

Table 6. Connections at the controller 

Module Input 
Connection 

Output 
Connection 

131 141 
132 142 
133 143 

Controller 1 
module 1 

153 163 
134 144 
151 161 
152 162 
171 181 

Controller 1 
module 2 

172 182 

Table 7. Output connections 

Node Module Output 
Connections  

IO module 1 141; 142; 14; 162 
RIO 1 

IO module 2 163 

RIO 2 IO module 4 144 

RIO 3 IO module 2 161; 181; 182 

6.5.1 Statistical Results of the Simulation 
Table 8 provides the results of the application of such approach to the analysis of the 

simulation output data. In this, we will attempt to construct a confidence interval for the 
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end-to-end response time that can be expected in the long run. This estimation is based on 
the observation of successive end-to-end response time values verified across simulation 
replications and the variance of these observations. The number of replications performed 
was 50, which was a number of replications that allowed obtaining an error below 25-26% 
of the estimate for all transactions. 

The X in the table below represents the estimation for the end-to-end response time of 
the transactions. The margin of error (ε) gives a measure on how accurate the estimation is, 
based on the variability of the estimation. The confidence level (99.9%) reflects the amount 
of confidence that, in the long run, this approach will be able to approximate the true end-
to-end response time mean. With these values, it is possible to construct the confidence 
intervals displayed. 

Table 8. Results of simulation output using replication/deletion  
(sorted by transaction periodicity) 

Transaction 
Estimation for 99.9% confidence 

interval 
(X ± ε  ms) 

99.9% 
Confidence interval 

(ms) 
2 11.30 ± 2.53 [8.77,13.83] 
1 15.81 ± 4.05 [11.76,19.86] 
4 30.77 ± 3.79 [26.98,34.57] 
3 38.36 ± 6.82 [31.53,45.18] 
7 113.01 ± 18.86 [94.15,131.87] 
5 83.13 ± 17.23 [65.90,100.36] 
6 120.88 ± 15.13 [105.76,136.01] 
8 300.70 ± 23.83 [276.87,324.53] 
9 526.64 ± 34.53 [492.11,561.17] 

This evaluation of the behaviour of a concrete system may be of relevance to the 
systems designer, when a probabilistic analysis of the system is being carried out.  

Note that this evaluation is more suitable for means and variance behaviour. Its 
applicability for values on the tail of distributions (such as worst-case) is still object of 
current work, thus the reader is referred to the next sections of this dissertation for further 
discussion on these issues.  

Some additional remarks that might be raised towards this analysis include the fact that 
the simulation data needed to produce such results may be at a prohibitive computation 
cost. This time actually depends on a number of variables. The complexity of the system 
influences the number of events generated during the simulation, the variance of the 
variables under study affect the size needed for each individual simulation replication, and 
the margin of error desired, which is also influenced by the variation of the variables of 
interest, may be controlled by the number of simulation replications. A close investigation 
of these matters is beyond the scope of dissertation, nevertheless, it can be advanced that, 
for the example presented, each replication took less than 2 minutes to run on a fairly old 
machine (PIII 1GHz). 
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6.6 Summary 
In this chapter, the modelling and simulation of EIP-based distributed systems 

performed with the purpose of extracting temporal properties was delineated. The basic 
blocks enabling to build EIP discrete-event simulations are detailed. Similar to what was 
done in Chapter 5, the simulation is instantiated with an example scenario that allows 
obtaining some results by applying the reasoning outlined in Chapter 4. 
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7 Conclusions and Future Work 

7.1 Summary and Conclusions 
Ethernet-based technologies have already gained a strong position in the factory-floor. 

For many years, deemed non determinist, Ethernet has gone through some evolution which 
enables its use in real-time applications. Nevertheless, Ethernet technology, by itself, does 
not include features above the lower layers of the OSI communication model. Although lots 
of attention has been devoted to the timing analysis of Ethernet-like technologies and 
solutions, most of the work on Ethernet has been restricted to the Data Link Layer level. 
This dissertation investigates the extraction of overall temporal properties of COTS factory-
floor communication systems based on a concrete Ethernet-based COTS technology (EIP), 
which provides a fully defined communication protocol stack.  

Primarily, de inner workings of the distributed system to analyse are overviewed. The 
main components of EIP systems are outlined and the major delay components in a defined 
distributed transaction are identified. 

In order to tackle the problem of devising appropriate tools for the timeliness analysis of 
EIP systems, two main lines are followed.  

One builds upon traditional real-time response time analysis to provide an analytical 
formulation enabling to find end-to-end response times in EIP based distributed systems. 
Although this analysis can still be further enhanced, it suffers of some pitfalls, being the 
most important of these, the inherent pessimistic results. Per se it contains a relevant 
contribution for the holistic analysis of Ethernet-based COTS systems. 

The other approach promotes the idea that simulation is a useful tool for analysing and 
understanding complex systems. Indeed, the use of discrete-event simulation models can be 
a powerful tool for the timeliness evaluation of the overall system, but particular care must 
be taken with the results provided by traditional statistical analysis techniques. Therefore, 
some discussion was also introduced on the use of simulation results to perform statistical 
timeliness analysis. 

A closing discussion, based on the preceding models and results presented, can be 
commenced by evaluating the distance between the worst-case of the analytical model 
results and the average and worst-case that actually can be verified within a considerable 
life-time of the simulation. 

Besides the efforts made in the validation and analysis of the results correctness from 
both the simulation and analytical models, comparing results from both models provides a 
further step in their validation. As the analytical model developed is based on a set of 

 



Chapter 7. Conclusions and Future Work. 

62 

worst-case assumptions, its results should always bound the results given by the simulation 
model. 

Table 9. Analytical model results for previously simulated scenario (Figure 28) 
(sorted by transaction periodicity) 

Input Output  
Tr. Lisn→sw 

(ms) 
Lisw 

(ms) 
Lisw→en 

(ms) 
Lisn→sw 

(ms) 
Lisw 

(ms) 
Lisw→en 

(ms) 

Ri  
(ms) 

2 8.25 0.05 4.50 11.50 0.03 1.75 28.09 
1 11.25 0.05 4.50 14.50 0.03 1.75 34.09 
4 21.25 0.06 4.50 24.50 0.03 1.25 53.59 
3 26.25 0.07 4.50 29.50 0.06 1.75 64.13 
7 56.50 0.09 4.50 59.50 0.06 1.50 124.14 
5 76.50 0.10 4.50 79.50 0.08 1.75 164.42 
6 81.50 0.11 4.50 84.50 0.09 1.75 174.45 
8 201.75 0.12 4.50 204.50 0.09 1.50 414.46 
9 351.75 0.13 4.50 354.50 0.10 1.50 714.48 

Table 9 exhibits the analytical model results for the scenario put forward earlier (Figure 
28, Section 6.5).  The previous data (from Table 9) is now set side by side, in Table 10, 
with the simulation model results. The table displays both the estimate average and the 
maximum value observe within all replications. The difference between the maximum 
value observed and the worst-case predicted by the analytical model is exhibited, in 
percentage, in the last column.  

Table 10. Comparison of simulation with analytical model results 
(sorted by transaction periodicity) 

Simulation model results 

Trans. Estimated 
Average 

(ms) 

Maximum 
observed 

(ms) 

Math. model results 
(ms) 

Difference  
(1-Math. Model / Sim.  max) 

2 11.30 11.4 28.09 59%
1 15.81 16.0 34.09 53% 
4 30.77 30.9 53.59 42% 
3 38.36 38.9 64.13 39% 
7 113.01 116.2 124.14 6% 
5 83.13 85.7 164.42 48% 
6 120.88 123.0 174.45 29% 
8 300.70 305.3 414.46 26% 
9 526.64 537.3 714.48 25% 

A first observation to be made from the data in Table 10 is that the analytical model 
indeed bounds the end-to-end response times observed in the simulation. The expected 
pessimist inherent to the analytical formulation, based on a number of worst-case 
assumptions is confirmed, weighing the difference between the analytical model results and 
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the maximum observed through the set of simulation replications. Even more important is 
the fact that as the system becomes more complex, the pessimism increases, thus increasing 
the necessity to consider a stochastic representation of the events. 

Actually, it is also noticeable that the maximum values observed are much closer to the 
estimated long-run average behaviour than the analytical model predictions. This is also 
justifiable by the fact that the analytical model aggregates a number of worst-case scenarios 
for the several delay components that, in reality, hardly ever occur in conjunction. This 
further motivates the need for different types of simulation and simulation output analysis, 
adequate to evaluate such issues correctly, rather than only extraction average case 
performance measurements. These matters are already currently being assessed [14] and 
will be overviewed in the Future Work Section. 

The problem of developing methods to correctly introduce and handle probabilistic 
assumptions in analytical models has already been tackled by several researchers [64-69]. 
Nevertheless, even assuming the existence of a probabilistic characterisation of the system 
components, it is also clear that the correct characterisation, in statistical terms, of a system 
is very much sensitive and dependent on the concrete system and on the concrete 
application of the system. This characterisation becomes a problem with greater relevance 
when the complexity of the system is increasingly higher and an a priori evaluation of the 
system is required. Additionally, the correct results of a probabilistic analysis are, in great 
magnitude, dependent on these inputs. 

The use of discrete event simulation models is thus an appealing approach for the 
analysis of intricate systems. Being a very practical tool and because of its approximation to 
the real world, discrete-event simulation presents itself as an attractive method to acquire 
knowledge of elaborate distributed systems, recurring to the statistical background already 
established for the analysis of simulation data. 

As the complexity of systems increases (perhaps to the point where worst-case 
analytical-based techniques will fail to be useful), simulation or a combination of 
simulation with other techniques may be essential. It is however noted that simulation can 
be very good at modelling the middle of distributions, but there are numerous problems 
when trying to extract other performance measures, like worst-case end-to-end response 
time.  The Future Work Section of this dissertation unveils some approaches to extract 
other measures of performance than means. 
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7.2 Future Work 
In the course of the development of this dissertation a number of possible ramifications 

for further work have sprung. Some of these are already in the process of investigation, 
while others are little more than suggestions for further development. The most relevant of 
these are: 

• fine-tuning and thorough validation of the models; 

• development of a wrapping layer on top of the simulation model; 

• introduction of less pessimistic assumptions into the analytical model; 

• exploration of different performance measures for simulation. 

7.2.1 Fine-tuning and Thorough Validation of the Models 
The models presented are, to a considerable degree, tuned and validated. However, it 

was not possible to perform experimentation and comparison with large real systems. It is 
necessary to point out that such large systems are difficult to build, because of the high 
costs involved.  

Further validations and fine-tuning could certainly be accomplished by comparing the 
models results with real data, especially in order to have a better understanding of how 
these models scale up.  

7.2.2 Development of a Wrapping Layer 
At this moment, the configuration of the simulation model is done directly in 

OMNeT++ configuration files. This is actually a very laborious task. It comprises the 
definitions of nodes, connections and their topology in the network. Each of these possesses 
a great number of parameters to configure, and, most of these configurations are repetitive 
and quite obtuse to do by hand.  

The development of an application to hide these details from users, and enable them to 
easily build different simulations, reducing the repetitive tasks needed and providing a more 
intuitive interface to the system designer, would be of great value. 

7.2.3 Introduction of Less Pessimistic Assumptions 
Chapter 5 provided an effort to formulate an analytical solution enabling to find end-to-

end response times in EIP based distributed systems. This formulation includes some rather 
pessimistic assumptions. Further developments on this model can possibly relax some of 
these assumptions and therefore reduce the pessimism of the overall model. 

Still, with the development of simulation models for the same system, another 
perspective can be pursued. Discrete event simulation can also provide results enabling less 
pessimistic assumptions (e.g. on precedence or offsets of events) for the analytical response 
time formulations. 
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7.2.4 Different Measures of Performance in Simulation Studies  
Simulation model are usually a very good tool for evaluation of average behaviour. 

Earlier, in Section 4.4.2, some well known approaches for estimating distributions out of 
simulation output, and the confidence which can be applied to its mean values where 
presented and applied. But, what about worst-case behaviour?  

This is the basis for a discussion on the applicability of such approaches to derive 
confidence on the tail of distributions, where the worst-case is expected to be. Some options 
to extract worst-case performance measures that could be subject of future advancements 
are now briefly explored. 

Extreme Value Theory 
Goodness-of-fit tests may be used to evaluate the likeness between the sample data 

distribution and a theoretical distribution. If it is possible to obtain a good approximation 
from the theoretical distribution, then it is usually feasible to obtain good estimates of the 
output variables. However, for the purpose of drawing worst-case estimates from these 
distributions we are considering the tails of the probabilistic distributions and it is known 
that these are the areas where less accuracy exists. Considering that we capture a sufficient 
number of values close to the worst-case value during the simulation runs, we will probably 
end up with a heavy-tailed distribution. A distribution function or random variable is said to 
be heavy-tailed if it presents a high coefficient of variance. For example, in [70], the 
authors found that the distribution of execution times was better represented by a Gumbel 
distribution (a heavy tail-distribution). Other examples of heavy tail distributions include all 
extreme values distributions (Gumbel, Fréchet and Weibull), t-student or Pareto 
distributions. 

An important property related to heavy tail distributions is that they are (essentially) 
invariant under maximisation (extreme value theory) [71]: This means that, if X(1), X(2), 
… are independent and identically distributed with common distribution function F that is 
heavy-tailed and M(n) = max(X(1),…,X(n)),  then GnnM →α/)( , as , in which 
G is the Fréchet distribution.  This may suggest a generalisation for extreme values, similar 
to the central limit theorem for means, when n is large enough. 

∞→n

Heavy-tail distributions have been object of recent study in the fields of load balancing 
(CPU, network), job scheduling (Web servers) and complex system studies. Particularly, 
there are some proposals for modelling and analysing heavy-tail distributions for estimation 
of rare event probabilities with computable tractable techniques [72, 73]. 

Average Maximums 
Derived from the methods referred in Section 4.4 for simulation output analysis, an 

intuitive approach, for trying to obtain an estimator for the worst-case value of the output 
variable is to pick the maximum value in the set of data from each simulation replica, 
instead of calculating a mean value. The problem of such approach is the assumption of a 
normally distributed variable, needed for the applicability of the previously mentioned 
methods for estimating means. A possible solution could be to group the values obtained in 
batches and apply the assumption of a normally distributed average over the means of each 
batch, in a similar way to the batch means procedure. Doing this could result in an 
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additional statistical error introduced by this second grouping. Additionally, the results 
obtained in this way, would not be exactly worst-case values, but average maximums, 
which can be a rather different thing and, to achieve the conditions of the central limit 
theorem, much more data would be necessary, most likely making this an impractical 
approach. 

Rare Event Simulation 
It is possible to view the event of a worst-case as a rare event, and the average system 

behaviour tends to be far apart from the worst-case. Obtaining precise estimates of such 
rare event probabilities using classical simulation can require prohibitively long run 
lengths.  

A popular technique applied for the simulation of rare events is called importance 
sampling. Basically, importance sampling comprises of to different approaches. One, that 
attempts to modify the probability dynamics, in such a way that rare events will occurs 
more frequently. An alternative importance sampling technique is trajectory splitting, based 
on the assumption that there exist some well identifiable intermediate system states that 
much more often that the rare events of interest. The idea is to detect these intermediate 
states during simulation execution and split the simulation execution into several 
independent sub-trajectories, simulated from that state. Naturally, to obtain the final 
estimator, the results must be adjusted accordingly to the modification introduced. See [74] 
and references within for further information about importance sampling techniques. 

Importance sampling may indeed obtain a significant reduction in the amount of 
observations required to obtain the same estimator precision as would be obtained in a 
simulation that does not use importance sampling, however, this requires a considerable 
amount of problem-specific knowledge from the simulation designer and how the modified 
distributions introduced will affect the distribution of the target events of interest. Reducing 
the simulation length, while simultaneously retaining the ease and flexibility of simulation 
is an important issue, receiving increasing considerable attention from researchers.  
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GLOSSARY 

C++SIM Programming tool for simulation of discrete processes based on the C++ 
language. See Section 3.2. 

CAN Controller Area Network is a serial bus standard originally developed by 
Robert Bosch GmbH for connecting electronic control units. It was initially 
created for the automotive market (as a vehicle bus). But nowadays it is used 
in many embedded control applications. The CAN data link layer protocol is 
standardised in ISO 11898-1 (2003). This standard describes mainly the data 
link layer - comprised by logical link control (LLC) sublayer and the Media 
Access Control (MAC) sub-layer - and some aspects of the physical layer of 
the ISO/OSI Reference Model. All the other protocol layers are left to the 
network designer's choice. 

CIP Control and Information Protocol is an application layer protocol that 
implements a distributed object model. It is a very versatile protocol that has 
been designed with the automation industry in mind. However, due to its very 
open nature, it can be applied to many more areas. See Section 2.3. 

CNET Discrete-event network simulator enabling experimentation with various 
data-link layer, network layer, routing and transport layer networking 
protocols. See Section 3.3. 

ControlNet ControlNet technology provides deterministic and repeatable, 
communications for the most demanding factory-floor automation 
applications. It delivers high-speed transport of both time-critical I/O and 
messaging data on single or redundant physical media. See Section 2.3. 

CORBA Common Object Request Broker Architecture. The CORBA standard is 
created and controlled by the Object Management Group (OMG). It defines 
APIs, communication protocol, and object/service information models to 
enable heterogeneous applications written in various languages running on 
various platforms to interoperate. CORBA therefore provides platform and 
location transparency for well-defined objects, which are the fundamental 
underpinnings of any distributed computing platform. 

CoS Change-of-State. See Section 2.3. 

COTS Commercial-Of-The-Shelf. Term for systems which its components are 
manufactured commercially. COTS systems are in contrast to systems that 
are produced entirely and uniquely for the specific application. 
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CSIM Programming tool for simulation of discrete processes based on the C 
language. See Section 3.2. 

CSMA/CD Carrier Sense Multiple Access with Collision Detection is a network control 
protocol in which a carrier sensing scheme is used and a transmitting data 
station that detects another signal while transmitting a frame, stops 
transmitting that frame, transmits a jam signal, and then waits for a random 
time interval before trying to send that frame again. 

CTDMA Concurrent Time Domain Multiple Access. A time slice medium access 
algorithm used by ControlNet. See Section 2.3. 

DCOM Distributed Component Object Model is a Microsoft proprietary technology 
for software components distributed across several networked computers. It is 
descended from COM, later part of COM+. It has been deprecated in favour 
of Microsoft .NET. 

DEC Digital Equipment Corporation is a pioneering company in the American 
computer industry. This acronym was once officially used by DEC itself, but 
discarded in favour of “Digital” in order to avoid a trademark dispute. They 
were later acquired by Compaq, who subsequently merged with Hewlett-
Packard. As of 2004 their product lines are still produced under the HP name. 

DeviceNet The DeviceNet network is an open low-level network that provides 
connections between simple industrial devices (such as sensors and actuators) 
and higher-level devices (such as PLC controllers and computers). See 
Section 2.3. 

EDF Earliest Deadline First is a dynamic priority real-time scheduling policy. 
With EDF, the task with the earliest deadline is always executed first. See 
Section 4.2. 

EIP Ethernet/IP. 

Ethernet/IP Ethernet/IP (EIP), where IP stands for Industrial protocol is a high-level 
industrial protocol for industrial automation applications. Built on the 
standard TCP/IP protocol suite, it uses all the traditional Ethernet hardware 
and software to define an application layer protocol for configuring, accessing 
and controlling industrial automation devices. Ethernet/IP classifies Ethernet 
nodes as predefined device types with specific behaviours. The set of device 
types and the EIP application layer protocol is based on the Control and 
Information Protocol (CIP). See Section 2.3 

Fieldbus A generic term used to describe a common communications protocol for 
control systems and/or field instruments. 

FPS Fixed Priority Scheduling. See Section 4.2. 
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IEEE The Institute of Electrical and Electronics Engineers is a non-profit, 
professional organisation based in the United States. The IEEE was formed in 
1963 by the merger of the Institute of Radio Engineers (IRE) and the 
'American Institute of Electrical Engineers' (AIEE). The IEEE has branches 
in many parts of the world. Its members are electrical engineers, computer 
scientists, telecommunications workers, etc. Its goal is to promote knowledge 
of electrical engineering. One of its most important roles is in establishing 
standards for computers formats and devices. 

IGMP The Internet Group Management Protocol is a communications protocol used 
to manage the membership of Internet Protocol multicast groups. IGMP is 
used by IP hosts and adjacent multicast routers to establish multicast group 
memberships. It is an integral part of the IP multicast specification, like 
ICMP for unicast connections. 

Java/RMI The Java Remote Method Invocation API, or RMI, is an application 
programming interface for performing remote procedural calls. 

MAC Medium Access Control. The lower sub-layer of the OSI data link layer, the 
interface between a node's Logical Link Control and the network's physical 
layer. The MAC differs for various physical media. The MAC sub-layer is 
primarily concerned with breaking data up into data frames, transmitting the 
frames sequentially, processing the acknowledgment frames sent back by the 
receiver, handling address recognition, and controlling access to the medium. 

NED NEtwork Description is an OMNeT++ specific language usage to define a 
network’s properties in a modular way. See Section 3.4. 

NetSim Simulation package intended to offer a very detailed simulation of 
Ethernet.3.3 

Ns-2 Network Simulator 2 is a discrete event simulator targeted at networking 
research. Ns-2 provides substantial support for simulation of TCP, routing, 
and multicast protocols over wired and wireless (local and satellite) networks. 
See Section 3.3. 

OMNeT++ Objective Modular Network Testbed in C++, a public-source, object-oriented 
modular discrete event simulation package that can be used for modelling: 
communication protocols, computer networks and traffic modelling, 
multiprocessors and distributed systems, etc. OMNeT++ also supports 
animation and interactive execution. See Section 3.4. 

OPC OLE for Process Control is the original name for a standard developed in 
1996 by an industrial automation industry task force. The standard specified 
the communication of real-time plant data between control devices from 
different manufacturers. The original standard was based on the OLE COM 
and DCOM technologies developed by Microsoft Corporation for the MS 
Windows operating system family. The standard is now maintained by the 
OPC Foundation and has been renamed the OPC Data Access standard. 
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OPNET OPNET is widely held has the state-of-art in network simulation, its suite of 
products that combines predictive modelling and a comprehensive 
understanding of networking technologies to enable design, deployment, and 
management of network infrastructures, network equipments, and networked 
applications. See Section 3.3. 

OSI The Open Systems Interconnection Reference Model (OSI Model or OSI 
Reference Model for short) is a layered abstract description for 
communications and computer network protocol design, developed as part of 
the Open Systems Interconnect initiative. It is also called the OSI seven layer 
model. The model divides the functions of a protocol into a series of layers. 
Each layer has the property that it only uses the functions of the layer below, 
and only exports functionality to the layer above. A system that implements 
protocol behaviour consisting of a series of these layers is known as a 
'protocol stack' or 'stack'. Protocol stacks can be implemented either in 
hardware or software, or a mixture of both. Typically, only the lower layers 
are implemented in hardware, with the higher layers being implemented in 
software. 

PARSEC PARallel Simulation Environment for Complex systems, a C-based simulation 
language, developed by the UCLA Parallel Computing Laboratory, for 
sequential and parallel execution of discrete-event simulation models. See 
Section 3.2. 

PRNG A Pseudo-Random Number Generator is an algorithm which generates a 
sequence of numbers, the elements of which are approximately independent 
of each other. 

RM Rate Monotonic real-time scheduling policy. The term “rate monotonic” 
originated as a name for the optimal task priority assignment in which higher 
priorities are accorded to tasks that execute at higher rates (that is, as a 
monotonic function of rate). Rate monotonic scheduling is a term used in 
reference to fixed priority task scheduling that uses a rate monotonic 
prioritisation. See Section 4.2. 

RPI Requested Packet Interval. Parameter that defines the periodicity of CIP 
connections. See Section 2.3. 

SIMSCRIPT SIMSCRIPT is a simulation language with both declarative and procedural 
features, designed for discrete-event and hybrid discrete/continuous 
modelling. See Section 3.2. 

SIMULA The SIMULA programming language was designed and built at the 
Norwegian Computing Center (NCC) in Oslo between 1962 and 1967. It was 
originally designed and implemented as a language for discrete event 
simulation, but was later expended and re-implemented as a full scale general 
purpose programming language. See Section 3.2. 
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SMURPH A System for Modelling Unslotted Real-time PHenomena is intended to the 
simulating communication protocols at the medium access control level. See 
Section 3.3. 

TCP/IP The Internet protocol suite is the set of protocols that implement the protocol 
stack on which the Internet runs. It is sometimes called the TCP/IP protocol 
suite, after the two most important protocols in it: the Transmission Control 
Protocol (TCP) and the Internet Protocol (IP), which were also the first two 
defined. 

TCP Transmission Control Protocol is a connection-oriented, reliable delivery 
byte-stream transport layer protocol currently documented in IETF RFC 793. 

UDP The User Datagram Protocol is a minimal message-oriented transport layer 
protocol that is currently documented in IETF RFC 768. 

TCP/UDP/IP In this dissertation, used to denominate the Internet protocol suite, 
emphasising the use of the UDP protocol layer. 

TDMA Time Division Multiple Access is a medium access control scheme for shared 
medium networks. It allows several users to share the same frequency by 
dividing it into different time slots. The users transmit in rapid succession, 
one after the other, each using their own timeslot. See Section 5.4. 

WCET Worst-case Execution Time. See Section 4.2. 

WWW The World Wide Web (the “Web” or “WWW“ for short) is a distributed (not 
centralised) hypertext system that operates over the Internet. Hypertext is 
browsed using a program called a web browser which retrieves pieces of 
information (called “documents” or “web pages”) from web servers (or “web 
sites”) and displays them on your screen. You can then follow hyperlinks on 
each page to other documents or even send information back to the server to 
interact with it. 
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A p p e n d i x e s   

APPENDIX A 

A.1 Network Definition Schema Documentation 
For calculating the results of the analytical model, a small tool was developed. The most 

arduous task of this tool is the handling of the network definitions. For this, the tool reads 
XML files that define the topology of a network along with all the variables needed for the 
calculations. The next sections document the XML schema for these files. 

A.1.1 Element Network 
diagram 

 
namespace ethipnet-schema 

children Nodes Transactions

attributes Name   Type   Use   Default   Fixed   Annotation 

name   xs:string   required         

bps   xs:long   required           
 

annotation documentation Network. Attributes: Network bitrate (bps) 
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A.1.2 Element Network/Nodes 
diagram 

 
children EthIPNode switchNode

annotation documentation  Group of nodes in the network: IOs, Controllers 
(EthIPNodes) and Switches 

 

A.1.3 Element Network/Nodes/EthIPNode 
diagram 

 
type ethips:TNode

children modules
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attributes Name   Type   Use   Default   Fixed   Annotation 

nodeType   ethips:TNodeType  required           

id   xs:ID   required           

dea   xs:double   required           

ts   xs:double   required           
 

annotation documentation List of IOs and Controllers in the Network. Each node in the 
network is composed by a list of modules. Every node is 
assumed to have a ethernet adapter module, so it is not 
included in this list. Attributes: Processing delay at the eth. 
adapter, in ms (dea); Backplane TDMA slot (or frame) duration, 
in ms (ts) 

 

A.1.4 Element Network/Nodes/switchNode 
diagram 

 
type ethips:TSw

attributes Name   Type   Use   Default   Fixed   Annotation 

id   xs:ID   required           

np   xs:int   required           

dsl   xs:double  required           

sif   
 

xs:int   required           

annotation documentation List of Switches in the Network; Attributes: Number of ports (np); 
Latency introduced by the switch, in ms (dsl); Size, in bytes, of the 
Inter-frame space, to calcule the Inter-frame delay in function of 
the bitrate (sif) 

 

A.1.5 Element Network/Transactions 
diagram 
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children transaction

annotation documentation  Group of transactions in the network 
 

A.1.6 Element Network/Transactions/transaction 
diagram 

 
type extension of ethips:TTrans

children generator switch processor switch sink

attributes Name   Type   Use   Default   Fixed   Annotation 

tid   xs:ID   required           

sm   xs:int   required           
 

annotation documentation  List of transactions in the network; Attributes: Size, in bytes, of 
the associated message, used to calculate the time to transmit 
the message in function of the bitrate (sm) 

 

A.1.7 Complex Type TNode 
diagram 
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namespace ethipnet-schema 

children modules

used by element Network/Nodes/EthIPNode
 

attributes Name   Type   Use   Default   Fixed   Annotation 

nodeType   ethips:TNodeType   required           

id   xs:ID   required           

dea   xs:double   required           

ts   xs:double   required           
 

annotation documentation Each node in the network is composed by a list of modules. 
Every node is assumed to have a ethernet adapter module, so 
it is not included in this list. Attributes: Processing delay at the 
eth. adapter, in ms (dea); Backplane TDMA slot (or frame) 
duration, in ms (ts) 

 

A.1.8 Element TNode/modules 
diagram 

 
children module

A.1.9 Element TNode/modules/module 
diagram 

 
attributes Name   Type   Use   Default   Fixed   Annotation 

mid   xs:ID   required           

type   ethips:TModuleType   required           
 

A.1.10 Complex Type TSw 
diagram 

 

namespace ethipnet-schema 

used by element Network/Nodes/switchNode
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attributes Name   Type   Use   Default   Fixed   Annotation 

id   xs:ID   required           

np   xs:int   required           

dsl   xs:double   required           

sif   xs:int   required           
 

annotation documentation  Attributes: Number of ports (np); Latency introduced by the 
switch, in ms (dsl); Size, in bytes, of the Inter-frame space, 
to calcule the Inter-frame delay in function of the bitrate (sif) 

 

A.1.11 Complex Type TTrans 
diagram 

 
namespa

ce 
ethipnet-schema 

children generator switch processor switch sink

used by element  Network/Transactions/transaction
 

attributes Name   Type   Use   Default   Fixed   Annotation 

tid   xs:ID   required           
 

A.1.12 Element TTrans/generator 
diagram 

 
type ethips:TTransModule

attributes Name   Type   Use   Default   Fixed   Annotation 

mid   xs:IDREF   required           
 

A.1.13 Element TTrans/switch 
diagram 

 
type ethips:TTransSw
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attributes Name   Type   Use   Default   Fixed   Annotation 

id   
 

xs:IDREF   required           

A.1.14 Element TTrans/processor 
diagram 

 
type extension of ethips:TTransModule

attributes Name   Type   Use   Default   Fixed   Annotation 

mid   xs:IDREF   required           

rt   xs:double   required           
 

annotation documentation Attributes: Response time of processing task, in ms (rt) 
 

A.1.15 Element TTrans/switch 
diagram 

 
type ethips:TTransSw

attributes Name   Type   Use   Default   Fixed   Annotation 

id   
 

xs:IDREF   required           

A.1.16 Element TTrans/sink 
diagram 

 
type ethips:TTransModule

attributes Name   Type   Use   Default   Fixed   Annotation 

mid   xs:IDREF   required           
 

A.1.17 Complex Type TTransModule 
diagram 

 
namespace ethipnet-schema 

used by elements TTrans/generator TTrans/processor TTrans/sink
 

attributes Name   Type   Use   Default   Fixed   Annotation 

mid   xs:IDREF   required           
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A.1.18 Complex Type TTransSw 
Diagram 

 
namespace ethipnet-schema 

used by elements  TTrans/switch TTrans/switch
 

Attributes Name   Type   Use   Default   Fixed   Annotation 

id   
 

xs:IDREF   required           

A.1.19 Simple Type TModuleType 
namespace ethipnet-schema 

Type restriction of xs:string 

used by attribute  TNode/modules/module/@type
 

Facets enumeration  Input 

enumeration  Output 

enumeration  Controller 
 

A.1.20 Simple Type TNodeType 
namespace ethipnet-schema 

Type restriction of xs:string 

used by attribute  TNode/@nodeType
 

facets enumeration  Ctrl 

enumeration  IO 
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APPENDIX B 

B.1 Simulation Model Documentation 
The documentation for the simulation model developed is presented next. The first three 

sections document the NED modules developed: Simple Modules, Compound Modules and 
Channels. Then the Messages defined are documented. 

Finally, the subsequent sections document the several C++ classes implemented. 

B.1.1 Simple Modules 

B.1.1.1 Module Backplane  
File: Backplane.ned 
Module Name: Backplane 
Abstract: Models an Ethernet/IP device backplane. in[i], out[i] gate pairs represent the 
backplane interface of each module. The backplane is encharged of serving these queues, 
simulating a time divison protocol. Insted of doing time divison, the backplane can just 
insert a delay, in function of the number of connections to the backplane. For this, the 
parameter “timeDivison” must be false. This is usefull for simulation performance reasons. 
It inspects the connection id of each packet in order to make the the apropriate decisons 
about where it should deliver the packets. 
IMPORTANT: To improve simulation performance, it is possible to disable the backplane 
time divison. To do this, set the parameter “timeDivison” to false. 
To be able to make decisions where to deliver de received packets, it depends on the 
connected modules having a CIPLayer (or CIPBridgeLayer), with one or more connected 
IOConnection modules. It analyses the connected modules in order to know the produced 
and consumed connections in each module. 
In the case of a CIPBridgeLayer, the parameters “connectionIDProducedList” and 
“connectionIDConsumedList” of the of the connected CIPBridgeLayer. These parameters 
define which connections are bridged throught the CIPBridgeLayer. They are defined by a 
string, with the several connection IDs separated by “:”. 
NOTE: No fragmentation of the received CIP messages is made. 
Author: Nuno Pereira 
Environment: OMNet++ simple module 
Revision History: Created Feb 2004. 
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B.1.1.2 Used in compound modules: 

EthIPController Module Name: EthIPController

EthIPIO Module Name: EthIPIO 

B.1.1.3 Parameters: 

Name Type Description 

tTableTime numeric transmit table time 

frameTime numeric frame transmit time 

timeDivison bool defines if the backplane will really do time 
divison;  

B.1.1.4 Gates: 

Name Direction Description 

in [ ] input each in[k], out[k] pair represents a 
backplane interface of a module 

out [ ] output each in[k], out[k] pair represents a 
backplane interface of a module 

B.1.1.5 Module CIPBridgeLayer  
File: CIPBridgeLayer.ned 
Module Name: CIPBridgedLayer 
Abstract: A CIPLayer that bridges between the backplane and the TCP/IP stack 
Author: Nuno Pereira 
Environment: OMNet++ simple module 
Revision History: Created Feb 2004. 

B.1.1.6 Used in compound modules: 

EthIPAdapter Module Name: EthIPAdapter

B.1.1.7 Parameters: 

Name Type Description

nodename string parameters 

multicastGroupPrefix string  
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B.1.1.8 Gates: 

Name Direction Description

from_bp [ ] input  

from_ntw input  

to_bp [ ] output  

to_ntw output  

B.1.1.9 Module CIPLayer  
File: CIPLayer.ned 
Module Name: CIPLayer 
Abstract: A CIPLayer that encapsulates/decapsulates CIP data items into CIP transport 
packets. Layers between IOProcessing and the backplane. 
Author: Nuno Pereira 
Environment: OMNet++ simple module 
Revision History: Created Feb 2004. 

B.1.1.10 Used in compound modules: 

EthIPControllerModule Module Name: EthIPControllerModule

EthIPIOModule Module Name: EthIPIOModule 

B.1.1.11 Parameters: 

Name Type Description

nodename string parameters 

B.1.1.12 Gates: 

Name Direction Description

from_cipio [ ] input  

from_bp input  

to_cipio [ ] output  

to_bp output  
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B.1.1.13 Module ControllerTask  
File: ControllerTask.ned 
Module Name: ControllerTask 
Abstract: Models a controller Task. Receives a messages in the input gate and delivers them 
in the corresponding output gate (output gate with the same index), after a defined task 
response time 
Author: Nuno Pereira 
Environment: OMNet++ simple module 
Revision History: Created Feb 2004. 

B.1.1.14 Used in compound modules: 

EthIPControllerModule Module Name: EthIPControllerModule

B.1.1.15 Parameters: 

Name Type Description

nodename string  

responseTime numeric  

B.1.1.16 Gates: 

Name Direction Description

in [ ] input  

out [ ] output  

B.1.1.17 Module IOConnection  
File: IOConnection.ned 
Module Name: IOConnection 
Abstract: Layers between Input, Output or Controller modules and IOConnection. Either 
acts like an input connection or output connection. But not both at the same time. Its 
behaviour is defined by the in gate connected (from_cip = output; from_input = input) 
When acting as an input connection it will generate a message at each RPI with the last data 
item value received. As an output it will simply forward messages to the out gate. 
Author: Nuno Pereira 
Environment: OMNet++ simple module 
Revision History: Created Feb 2004. 
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B.1.1.18 Used in compound modules: 

EthIPControllerModule Module Name: EthIPControllerModule

EthIPIOModule Module Name: EthIPIOModule 

B.1.1.19 Parameters: 

Name Type Description 

nodename string  

connectionID numeric Used to construct the multicast group addr.; 
should be unique, between 1-255 

ASICDelay numeric Configurable ASIC delay 

rpi numeric Requested Packet Interval for the input 

B.1.1.20 Gates: 

Name Direction Description 

out output in an output this is used to send messages to 
a controller 

from_input input 
input gate for an input module (cannot be 
connected at the same time as from_cip 
gate) 

from_cip input 
output gate for an output module (cannot be 
connected at the same time as from_input 
gate) 

B.1.1.21 Module Input  
File: Input.ned 
C++ definition: click here 
Module Name: Input 
Abstract: Models an input data generator. Creates cip data Items to be send to lower 
processing. Sets the timestamp of the messages, so the receiving output can calculate the 
end-to-end response time. 
Author: Nuno Pereira 
Environment: OMNet++ simple module 
Revision History: Created Feb 2004. 

B.1.1.22 Used in compound modules: 

EthIPIOModule Module Name: EthIPIOModule
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B.1.1.23 Parameters: 

Name Type Description 

nodename string  

period numeric Configurable period of data generation 

filterDelay numeric 
Configurable filter delay (IMPORTANT: 
Must be less than the data generation 
period) 

hwDelay numeric Configurable hardware delay 

dataLength numeric CIP class 0 or class 1 packet length 

B.1.1.24 Gates: 

Name Direction Description

out output  

B.1.1.25 Module NetworkLayers  
File: NetworkLayers.ned 
Module Name: NetworkLayers 
Abstract: NetworkLayers implement the TCP/IP Layer and Physical Layer functionalities. 
Responsible for encapsulating/decapsulating CIP UDP transport packets to be sent to the 
TCP/IP ethernet network. 
Assumes that a “intelligent” switching device is interconnecting the nodes 
Author: Nuno Pereira 
Environment: OMNet++ simple module 
Revision History: Created Feb 2004. 

B.1.1.26 Used in compound modules: 

EthIPAdapter Module Name: EthIPAdapter

B.1.1.27 Parameters: 

Name Type Description

nodename string  

ipAddress string  

ipProcessingDelay numeric  
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macProcessingDelay numeric  

B.1.1.28 Gates: 

Name Direction Description

from_phy input  

from_application input  

to_phy output  

to_application output  

B.1.1.29 Module Output  
File: Output.ned 
Module Name: IOProcessing.ned 
Abstract: Receives output data. Records statistics about the received data. Namely the end-
to-end response time. 
Author: Nuno Pereira 
Environment: OMNet++ simple module 
Revision History: Created Feb 2004. 

B.1.1.30 Used in compound modules: 

EthIPIOModule Module Name: EthIPIOModule

B.1.1.31 Parameters: 

Name Type Description

Nodename string  

connectionID numeric  

B.1.1.32 Gates: 

Name Direction Description

In input  

 

B.1.1.33 Module Switch  
File: Switch.ned 
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Module Name: Switch 
Abstract: This is a model of a switch for an Ehternet/IP network. It delivers a copy of the 
received packets to all corresponding ports, where consumers of the connection are present. 
To know where to deliver the packets, it uses parameters “connectionIDProducedList” and 
“connectionIDConsumedList” of the connected modules. 
Author: Nuno Pereira 
Environment: OMNet++ compound module 
Revision History: Created Feb 2004. 

B.1.1.34 Used in compound modules: 

EthIPNetwork1 Module Name: EthIPNetwork1

EthIPNetwork2 Module Name: EthIPNetwork1

B.1.1.35 Parameters: 

Name Type Description

nodename string  

switchDelay numeric  

B.1.1.36 Gates: 

Name Direction Description

in [ ] input  

Out [ ] output  
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B.1.2 Compound Modules 

B.1.2.1 Module EthIPAdapter  
File: EthIPAdapter.ned 
Module Name: EthIPAdapter 
Abstract: Ethernet/IP Adapter. Bridges commnunications from the backplane to the ethernet 
network. Has two communication interfaces: the backplane and full-duplex ethernet. 
The parameters “connectionIDProducedList” and connectionIDConsumedList define which 
connections are bridged throught the adapter: 
- connectionIDProducedList: Connections comming from ethernet, passing throught this 
adapter to the backplane - connectionIDConsumedList: Connections comming from the 
backplane, passing throught this adapter to ethernet  
They are defined by a string, with the several connection IDs separated by “:”. 
Author: Nuno Pereira 
Environment: OMNet++ compound module 
Revision History: Created Feb 2004. 

 

B.1.2.2 Contains the following modules: 

CIPBridgeLayer Module Name: CIPBridgedLayer

NetworkLayers Module Name: NetworkLayers 

B.1.2.3 Used in compound modules: 

EthIPController Module Name: EthIPController

EthIPIO Module Name: EthIPIO 

B.1.2.4 Parameters: 

Name Type Description 

 99



Appendix B. 

nodename string  

connectionIDProducedList string Bridged connections 

connectionIDConsumedList string Connections comming from the backplane, 
passing throught this CIPBridgeLayer 

B.1.2.5 Gates: 

Name Direction Description

from_backplane input  

to_backplane output  

from_eth input  

to_eth output  

B.1.2.6 Module EthIPController  
File: EthIPController.ned 
Module Name: EthIPController 
Abstract: Model of an Ethernet/IP Controller Composed of one or more controller modules 
(defined by parameter numControllerModules), one or more IO Modules (defined by 
parameter numIOModules), a backplane and an EThernet/IP Adapter. 
Author: Nuno Pereira 
Environment: OMNet++ compound module 
Revision History: Created Feb 2004. 

  

B.1.2.7 Contains the following modules: 

Backplane Module Name: Backplane 

EthIPAdapter Module Name: EthIPAdapter 

EthIPControllerModule Module Name: EthIPControllerModule

EthIPIOModule Module Name: EthIPIOModule 
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B.1.2.8 Used in compound modules: 

EthIPNetwork1 Module Name: EthIPNetwork1

EthIPNetwork2 Module Name: EthIPNetwork1

B.1.2.9 Parameters: 

Name Type Description 

nodename string  

numIOModules numeric modules configuration 

numControllerModules numeric connections  

connectionIDProducedList string  

connectionIDConsumedList string  

B.1.2.10 Gates: 

Name Direction Description

in input  

out output  

B.1.2.11 Unassigned submodule parameters: 

Name Type Description 

ioModule[*].numInputs numeric i/o configuration

ioModule[*].numOutputs numeric  

controllerModule[*].numInputs numeric i/o configuration

controllerModule[*].numOutputs numeric  

controllerModule[*].controllerTask.responseTime numeric  

B.1.2.12 Module EthIPControllerModule  
File: EthIPControllerModule.ned 
Module Name: EthIPControllerModule 
Abstract: Model of an Ethernet/IP Controller This controller has one controller task that 
consumes/produces all IOs of the controller module.  
Author: Nuno Pereira 
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Environment: OMNet++ compound module 
Revision History: Created Fev 2004. 

 

B.1.2.13 Contains the following modules: 

CIPLayer Module Name: CIPLayer 

ControllerTask Module Name: ControllerTask

IOConnection Module Name: IOConnection 

B.1.2.14 Used in compound modules: 

EthIPController Module Name: EthIPController

B.1.2.15 Parameters: 

Name Type Description 

nodename string  

numInputs numeric i/o configuration

numOutputs numeric  

B.1.2.16 Gates: 

Name Direction Description

in input  

out output  

B.1.2.17 Unassigned submodule parameters: 

Name Type Description
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controllerTask.responseTime numeric  

B.1.2.18 Module EthIPIO  
File: EthIPIO.ned 
Module Name: EthIPIO 
Abstract: Model of an Ethernet/IP IO Composed of one or more IO Modules (defined by 
parameter numIOModules), a backplane and an EThernet/IP Adapter 
Author: Nuno Pereira 
Environment: OMNet++ compound module 
Revision History: Created Feb 2004. 

 

B.1.2.19 Contains the following modules: 

Backplane Module Name: Backplane 

EthIPAdapter Module Name: EthIPAdapter 

EthIPIOModule Module Name: EthIPIOModule

B.1.2.20 Used in compound modules: 

EthIPNetwork1 Module Name: EthIPNetwork1

EthIPNetwork2 Module Name: EthIPNetwork1

B.1.2.21 Parameters: 

Name Type Description 

nodename string  

numIOModules numeric IO modules configuration 

connectionIDProducedList string  

connectionIDConsumedList string  
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B.1.2.22 Gates: 

Name Direction Description

in input  

out output  

B.1.2.23 Unassigned submodule parameters: 

Name Type Description 

ioModule[*].numInputs numeric i/o configuration

ioModule[*].numOutputs numeric  

B.1.2.24 Module EthIPIOModule  
File: EthIPIOModule.ned 
Module Name: EthIPIOModule 
Abstract: Model of an Ethernet/IP IO module 
Author: Nuno Pereira 
Environment: OMNet++ compound module 
Revision History: Created Fev 2003. 

 

B.1.2.25 Contains the following modules: 

CIPLayer Module Name: CIPLayer 

IOConnection Module Name: IOConnection 

Input Module Name: Input 

Output Module Name: IOProcessing.ned
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B.1.2.26 Used in compound modules: 

EthIPController Module Name: EthIPController

EthIPIO Module Name: EthIPIO 

B.1.2.27 Parameters: 

Name Type Description 

nodename string  

numInputs numeric i/o configuration

numOutputs numeric  

B.1.2.28 Gates: 

Name Direction Description

In input  

Out output  
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B.1.3  Channels 

B.1.3.1 Channel ethernet  
File: EthIPNetwork.ned 
(no description) 

B.1.3.2 Attributes: 

Name Value Description 

Delay normal(0.00015,0.00005)  

Datarate 100*10^6  
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B.1.4 Messages 

B.1.4.1 Message CIPDataItem  
File: CIPUDPTransportPacket.msg 
CIP Data Item definition 
According to Ethernet/IP Specification: Connected Data Item: Type ID + Length + Data  

B.1.4.2 Fields: 

Name Type Description 

headerSize int indicates the fixed header size = Type ID + 
Length (bytes) 

sequenceNumber unsigned long Sequence number in data item, in order for 
the outputs to control the data received 

dataLength unsigned int 
Data Item - Connected Data Item: Type ID 
+ Length + Data DataTypeID - Connected 
Data Item 

dataItem string Class 0 or class 1 packet; (Here, just a 
string) 

B.1.4.3 Message CIPUDPTransportPacket  
File: CIPUDPTransportPacket.msg 
CIP UDP Transport Packet definition 
According to Ethernet/IP Specification: Common Packet Format = Item Count + Address 
Item + Data Item 

B.1.4.4 Fields: 

Name Type Description 

headerSize int indicates the fixed header size = Item Count 
+ Address Item (bytes) 

connectionID unsigned int 

Common Packet Format: Item Count + 
Address Item + Data Item ItemCount -
Number of items to follow AddressItem -
Sequenced Address Item: Type ID + Length 
+ Data AddTypeID - Sequenced Address 
Item AddLength Data - Sequenced Address 
Item: Connection ID + Sequence Number 

B.1.4.5 Message EthernetFrame  
File: EthernetFrame.msg 
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Ethernet v.2.0 frame definition 
Header=DADDR, SADDR,Len/Type (14 Bytes) + Data (46-1500 Bytes) + FCS (4 Bytes) 

B.1.4.6 Fields: 

Name Type Description 

headerSize int indicates the fixed header size = Ethernet 
Header  

dAddr string Header (14 Bytes) 

sAddr string (6 Bytes) 

Type int 

(2 Bytes) Len/Type: 0x0800 (IP Datagram); 
0x0806 (ARP request/reply); 0x0835 (ARP 
request/reply);  
Data will be encapsulated in packet; (46-
1500 Bytes) 

Fcs int Frame Check Sequence (CRC) 

B.1.4.7 Message NetworkTransportPacket  
File: NetworkTransportPacket.msg 
Network Transport Packet definition 

B.1.4.8 Fields: 

Name Type Description 

headerSize int indicates the fixed header size = UDP 
Header + IP Header (bytes) 

sourcePort unsigned int  

destinationPort unsigned int  

sourceAddress string  

destinationAddress string  
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B.1.5 Class Documentation 

B.1.5.1 Backplane Class Reference 
Inheritance diagram for Backplane:  

 

B.1.5.2 Public Member Functions 
  Module_Class_Members (Backplane, cSimpleModule, 0) virtual void 

initialize() 

  Do initialization of class data members and any other initialization
procedure necessary.  

virtual void  handleMessage (cMessage *msg) 
  Process messages received.  
virtual void  finish () 
  Saves summary results (if any).  

B.1.5.3 Private Member Functions 
void  tokenize (const char *str, std::vector< double > &array) 
  Tokenize string containing numbers separated by “:” into the array.  

B.1.5.4 Private Attributes 
cPar *  tTableTime

  retrieved module parameter; Transmit table time, defines the “time 
slot” length for serving connections  

cPar *  frameTime

  retrieved module parameter; Frame Time, is the delay introduced to
transmit a frame  

bool  timeDivison
  flag to define if is doing time divison  
int  servingInterfaceIndex
  index of the interface being served  
int  servingConnectionIndex
  index of the connection being served  
int  numQueuedMessages
  count for the number of queued messages  
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int  numInterfaces
  number of interfaces connected to the backplane  
int  numProducedConnections
  total number of producing connections connected  
BackplaneInterface * bpInterface

  array of interfaces of the backplane (one for each input/output gates
pair)  

B.1.5.5 Detailed Description 
Backplane simple module class definition.  
Models an Ethernet/IP device backplane. 
The backplane has a BackplaneInterface with several queues to store messages from each 
connection of the modules connected to the backplane. 
It inspects the connection id of each received packet in order to make the the apropriate 
decisons about where it should queue the received packets . 
At a defined transmit table interval, the various connection queues are served, emulating a 
time divison protocol. 
Insted of doing time divison, the backplane can just insert a delay, in function of the 
number of connections to the backplane. For this, the parameter “timeDivison” must be 
false. This is usefull for simulation performance reasons. 
Warning: 
To improve simulation performance, it is possible to disable the backplane time divison. To 
do this, set the parameter “timeDivison” to false.  
To be able to make decisions where to deliver de received packets, it depends on the 
connected modules having a CIPLayer (or CIPBridgeLayer), with one or more connected 
IOConnection modules. It analyses the connected modules in order to know the produced 
and consumed connections in each module.  
In the case of a CIPBridgeLayer, the parameters “connectionIDProducedList” and 
“connectionIDConsumedList” of the of the connected CIPBridgeLayer. These parameters 
define which connections are bridged throught the CIPBridgeLayer. They are defined by a 
string, with the several connection IDs separated by “:”. 
Attention: 
No fragmentation of the received CIP messages is made. 
Author: 
Nuno Pereira  
Date: 
Fev 2004.  

B.1.5.6 Member Function Documentation 
voi  Backplane::finishd  (  ) [virtual]
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  Saves summary results (if any).  

voi  Backplane::handleMessaged ( cMessage * msg ) [virtual] 

  

Process messages received.  
The messages shall be processed according to the receiving gate. At reception of a 
message from upper modules, the message is queue in an appropriate queue, related to the 
originating connection id. At a defined transmit table interval, the various connection 
queues are served, emulating a time divison protocol. 
If time division is disabled (transmit table interval is zero), the messages received will be 
imediately processed and sent to the apropriate output gates, after a defined delay. 
Parameters: 

ms   g - cMessage* : Message received. 

Backplane::Module_Class_Members ( Backplane  ,
 cSimpleModule ,
 0  
 )  
 

  Do initialization of class data members and any other initialization procedure necessary.  

void Backplane::tokenize ( const char *  str,  
 std::vector< double > & array
 ) [private]  

  

Tokenize string containing numbers separated by “:” into the array.  
Parameters: 

str  - const char* : String to be parsed  
array  - std::vector<double>& : Object array to hold the resulting vector of 

numbers  
Returns: 
The object array with the resulting vector of numbers  

B.1.5.7 Member Data Documentation 
BackplaneInterface* Backplane::bpInterface [private] 
  array of interfaces of the backplane (one for each input/output gates pair) 

cPar* Backplane::frameTime [private]  
  retrieved module parameter; Frame Time, is the delay introduced to transmit a frame  
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int B ackplane::numInterfaces [private]

  number of interfaces connected to the backplane 

int B ackplane::numProducedConnections [private]

  total number of producing connections connected 

int B ackplane::numQueuedMessages [private]

  count for the number of queued messages 

int B ackplane::servingConnectionIndex [private]

  index of the connection being served 

int B ackplane::servingInterfaceIndex [private]

  index of the interface being served 

boo  l Backplane::timeDivison [private]

  flag to define if is doing time divison 

cPar* Backplane::tTableTime [private] 

  retrieved module parameter; Transmit table time, defines the “time slot” length for 
serving connections  

B.1.5.8 BackplaneInterface Class Reference 
 

B.1.5.9 Public Member Functions 
  BackplaneInterface () 
  ~BackplaneInterface () 

B.1.5.10 Public Attributes 
InterfaceConnection *  intConnection
  array of Interface Connections (one per producing connection)  
int  numProducedConnections
  number of connections delivered from this interface  
int  numConsumedConnections
  number of connections to be delivered to this interface  
int  numDeliverIndexes
  count of indexes of the out gates for packetes received in this 
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interface  
int *  producedConnections
  array if connectionIDs delivered from this interface  
int *  consumedConnections
  array if connectionIDs to be delivered to this interface  

B.1.5.11 Detailed Description 
BackplaneInterface class definition.  
A “helper” class with a queue to store messages from each module connected. Stores 
information about each module connected, in order to allow the backplane to make 
decisions on where to deliver each packet 
Author: 
Nuno Pereira  
Date: 
Feb 2004.  

B.1.5.12 Constructor & Destructor Documentation 
BackplaneInterface::BackplaneInterface(  ) [inline] 
BackplaneInterface::~BackplaneInterface(  ) [inline] 

 

B.1.5.13 Member Data Documentation 
int*  BackplaneInterface::consumedConnections

  array if connectionIDs to be delivered to this interface 

InterfaceConnection* BackplaneInterface::intConnection 
  array of Interface Connections (one per producing connection) 

int B ackplaneInterface::numConsumedConnections

  number of connections to be delivered to this interface 

int B ackplaneInterface::numDeliverIndexes

  count of indexes of the out gates for packetes received in this interface 

int B ackplaneInterface::numProducedConnections

  number of connections delivered from this interface 

int*  BackplaneInterface::producedConnections
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  array if connectionIDs delivered from this interface 

B.1.5.14 CIPBridgeLayer Class Reference 
Inheritance diagram for CIPBridgeLayer:  

 

B.1.5.15 Public Member Functions 
  Module_Class_Members (CIPBridgeLayer, cSimpleModule, 0) virtual void 

initialize() 

  Do initialization of class data members and any other initialization procedure 
necessary.  

virtual void handleMessage (cMessage *msg) 
  Process messages received.  
virtual void finish () 
  Saves summary results (if any).  

B.1.5.16 Private Member Functions 
void  processMsgFromBP (cMessage *) 
  Process messages received from the backplane to be delivered to lower UDP.  

 

B.1.5.17 Detailed Description 
CIPBridgeLayer simple module class definition.  
A CIPLayer that bridges between the backplane and the TCP/IP stack 
Author: 
Nuno Pereira  
Date: 
Feb 2004.  

B.1.5.18 Member Function Documentation 
voi  CIPBridgeLayer::finishd  (  ) [virtual]

  Saves summary results (if any). 

void CIPBridgeLayer::handleMessage( cMessage * msg ) [virtual]  
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Process messages received.  
The messages shall be processed according to the receiving gate.
Parameters: 

ms   g - cMessage* : Message received. 

CIPBridgeLayer::Module_Class_Members( CIPBridgeLayer , 
 cSimpleModule , 
 0  
 )  
 

  Do initialization of class data members and any other initialization procedure necessary.  

voi  CIPBridgeLayer::processMsgFromBPd  ( cMessage * msg ) [private] 

  

Process messages received from the backplane to be delivered to lower UDP.  
Constructs a new TransportInterfacePacket and encapsulates the received 
CIPUDPTransportPacket in it 
Parameters: 

ms   g - cMessage* : Message of type CIPUDPTransportPacket.

B.1.5.19 CIPLayer Class Reference 
Inheritance diagram for CIPLayer:  

 

B.1.5.20 Public Member Functions 
  Module_Class_Members (CIPLayer, cSimpleModule, 0) virtual void 

initialize() 

  Do initialization of class data members and any other initialization
procedure necessary.  

virtual void  handleMessage (cMessage *msg) 
  Process messages received.  
virtual void  finish () 
  Saves summary results (if any).  

B.1.5.21 Private Member Functions 
void  processMsgFromBP (cMessage *) 
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  Process messages received from the backplane.  

B.1.5.22 Private Attributes 
CIPConnTable connTable
  Connection table, to know where to deliver the received packets.  

B.1.5.23 Detailed Description 
CIPLayer simple module class definition.  
A CIPLayer that encapsulates/decapsulates CIP data items into CIP transport packets. 
Layers between IOProcessing and the backplane. 
Author: 
Nuno Pereira  
Date: 
Feb 2004.  

B.1.5.24 Member Function Documentation 
voi  CIPLayer::finishd (  ) [virtual]

  Saves summary results (if any). 

voi  CIPLayer::handleMessaged ( cMessage * msg ) [virtual] 

  

Process messages received.  
The messages shall be processed according to the receiving gate.
Parameters: 

ms   g - cMessage* : Message received. 

CIPLayer::Module_Class_Members( CIPLayer  , 
 cSimpleModule , 
 0  
 )  
 

  Do initialization of class data members and any other initialization procedure necessary. 

voi  CIPLayer::processMsgFromBPd  ( cMessage * msg ) [private] 

  

Process messages received from the backplane.  
Analyses received CIPUDPTransportPacket connection IDs and delivers them to the 
correct gate 
Parameters: 
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ms   g - cMessage* : Message of type CIPUDPTransportPacket. 

B.1.5.25 Member Data Documentation 
CIPConnTable CIPLayer::connTable [private] 
  Connection table, to know where to deliver the received packets. 

B.1.5.26 ControllerTask Class Reference 
Inheritance diagram for ControllerTask:  

 

B.1.5.27 Public Member Functions 
  Module_Class_Members (ControllerTask, cSimpleModule, 0) virtual void 

initialize() 

  Do initialization of class data members and any other initialization procedure 
necessary.  

virtual void handleMessage (cMessage *msg) 
  Process messages received.  
virtual void finish () 
  Saves summary results (if any).  

B.1.5.28 Private Attributes 
cPar *  responseTime
  retrieved module parameter; Task response time  

B.1.5.29 Detailed Description 
ControllerTask.cpp ControllerTask simple module class definition.  
Models a controller Task. 
Receives a messages in the input gate and delivers them in the corresponding output gate 
(output gate with the same index), after a defined task response time 
Warning: 
The number of inputs must be equal to the number of outputs. The correspondean between 
the input connection and output connection is made by the index of the input and output 
gates. 
Author: 
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Nuno Pereira  
Date: 
Feb 2004.  

B.1.5.30 Member Function Documentation 
voi  ControllerTask::finishd (  ) [virtual]

  Saves summary results (if any). 

voi  ControllerTask::handleMessaged ( cMessage * msg ) [virtual] 

  

Process messages received.  
Decapsulates the data item from the received message and deliver the message, at the 
output gate with the same index as the receiving input gate, after a defined task response 
time. 
Parameters: 

ms   g - cMessage* : Message received. 

ControllerTask::Module_Class_Members ( ControllerTask ,
 cSimpleModule ,
 0  
 )  
 

  Do initialization of class data members and any other initialization procedure necessary. 

B.1.5.31 Member Data Documentation 
cPar* ControllerTask::responseTime [private] 
  retrieved module parameter; Task response time 

B.1.5.32 Input Class Reference 
Inheritance diagram for Input:  

 

B.1.5.33 Public Member Functions 
  Module_Class_Members (Input, cSimpleModule, 0) virtual void initialize() 
  Do initialization of class data members and any other initialization procedure
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necessary.  
virtual void  handleMessage (cMessage *msg) 
  Process messages received.  
virtual void  finish () 
  Saves summary results (if any).  

B.1.5.34 Private Member Functions 
void  sendInput () 
  Generates and sends a data item.  
 

B.1.5.35 Private Attributes 
cPar *  dataLength
  retrieved module parameter; Size of the generated data  
cPar *  period
  retrieved module parameter; Period of generation  
cPar *  filterDelay
  retrieved module parameter; User defined filter delay  
cPar *  hardwareDelay
  retrieved module parameter; Hardware Delay  
unsigned long  sequenceNumber
simtime_t  nextGenTime
  Next data generation time.  

B.1.5.36 Detailed Description 
Input simple module class definition.  

B.1.5.37 Member Function Documentation 
voi  Input::finishd  (  ) [virtual] 

  Saves summary results (if any).  

voi  Input::handleMessaged ( cMessage * msg ) [virtual] 

  

Process messages received.  
This will be called only when receiving a generateNextInput message. Generates a data 
item message and schedules next generation. 
Parameters: 

ms   g - cMessage* : Message received. 
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Input::Module_Class_Members( Input  , 
 cSimpleModule , 
 0  
 )  
 

  Do initialization of class data members and any other initialization procedure necessary. 

voi  Input::sendInpud t(  ) [private] 

  

Generates and sends a data item.  
The data item is sent after the defined filterDelay and hardwareDelay intervals. The 
timestamp is set with current time, so the receiving output can calculate the end-to-end 
response time of this message.  

B.1.5.38 Member Data Documentation 
cPar* Input::dataLength [private] 
  retrieved module parameter; Size of the generated data 

cPar* Input::filterDelay [private] 
  retrieved module parameter; User defined filter delay 

cPar* Input::hardwareDelay [private] 
  retrieved module parameter; Hardware Delay 

sim ime_t t Input::nextGenTime [private]

  Next data generation time. 

cPar* Input::period [private] 
  retrieved module parameter; Period of generation 

uns gned long i Input::sequenceNumber [private]

B.1.5.39 InterfaceConnection Struct Reference 

B.1.5.40 Public Attributes
int  connectionID
cQueue  queue
DeliverIndexList *  deliverIndexList
DeliverIndexList *  deliverIndexList
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B.1.5.41 Detailed Description 
Interface Connection structure.  
holds a queue with information about the respective connection id and information about 
the gates where to deliver the messages from this connection  

B.1.5.42 Member Data Documentation 
int In terfaceConnection::connectionID 

DeliverIndexList* InterfaceConnection::deliverIndexList 
DeliverIndexList* InterfaceConnection::deliverIndexList 
cQueue InterfaceConnection::queue 

B.1.5.43 IOConnection Class Reference 
Inheritance diagram for IOConnection:  

 
 

B.1.5.44 Public Member Functions 
  Module_Class_Members (IOConnection, cSimpleModule, 0) virtual void 

initialize() 

  Do initialization of class data members and any other initialization
procedure necessary.  

virtual void  handleMessage (cMessage *msg) 
  Process messages received.  
virtual void  finish () 
  Saves summary results (if any).  

B.1.5.45 Private Member Functions 
void  sendInputData () 
  Constructs a message with the last data item received.  

B.1.5.46 Private Attributes 
cPar *  rpi

  retrieved module parameter; defined RPI for the connection (only used for 
input connections)  
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cPar *  asicDelay
  retrieved module parameter; ASIC delay  
bool  inputModule
  internal, calculated variables  
CIPDataItem *  dataItem
  defines if io connection processing acts like input or output  

B.1.5.47 Detailed Description 
IOConnection simple module class definition.  

B.1.5.48 Member Function Documentation 
voi  IOConnection::finishd (  ) [virtual]

  Saves summary results (if any). 

voi  IOConnection::handleMessaged  ( cMessage * msg ) [virtual] 

  

Process messages received.  
When acting as an input connection, at each RPI sends the last received input data item. 
When it receives a data item from an input, discards the last and stores it. Acting as an 
output, it will simply forward messages to the out gate. 
Parameters: 

ms   g - cMessage* : Message received. 

IOConnection::Module_Class_Members ( IOConnection  ,
 cSimpleModule ,
 0  
 )  
 

  Do initialization of class data members and any other initialization procedure necessary. 

voi  IOConnection::sendInputDatad  (  ) [private]

  
Constructs a message with the last data item received. 
Sends it after defined asic delay interval.  

B.1.5.49 Member Data Documentation 
cPar* IOConnection::asicDelay [private] 
  retrieved module parameter; ASIC delay 
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CIPDataItem* IOConnection::dataItem [private] 
  defines if io connection processing acts like input or output 

boo  l IOConnection::inputModule [private]

  internal, calculated variables  

cPar* IOConnection::rpi [private] 

  retrieved module parameter; defined RPI for the connection (only used for input 
connections)  

B.1.5.50 NetworkLayers Class Reference 
Inheritance diagram for NetworkLayers:  

 

B.1.5.51 Public Member Functions 
  Module_Class_Members (NetworkLayers, cSimpleModule, 0) 
virtual void initialize () 

  

Do initialization of class data members and any other initialization procedure
necessary. 
D:\OMNeT++\models\EthernetIP\doc\sourcedoc\classNetworkLayers.html 
- a1

virtual void handleMessage (cMessage *msg) 
  Process messages received.  

B.1.5.52 Private Member Functions 
void  processMessageFromPhy (cMessage *msg) 
  process messages received physical interface/channel  
void  processMessageFromApp (cMessage *msg) 
  process messages received from application layer  

B.1.5.53 Private Attributes 
cPar *  ipProcessing
  retrived module parameter; IP Processing Delay  
cPar *  macProcessing
  retrived module parameter; MAC Processing Delay  

124 



 Appendix B. 

char  ipAddr [20] 
  IP address.  
char  macAddr [20] 
  ethernet MAC address  

B.1.5.54 Detailed Description 
NetworkLayers.cpp NetworkLayers simple module class definition.  
NetworkLayers implement the TCP/IP Layer and Physical Layer functionalities. 
Responsible for encapsulating/decapsulating CIP UDP transport packets to be sent to the 
TCP/IP ethernet network. 
Warning: 
At reception from the ethernet network, assumes that a “intelligent” switching device is 
interconnecting the nodes, therefore all messages received are passed up to application 
layer. 
Attention: 
All ethernet addresses are constructed based on multicast like MAC address mapping 
Author: 
Nuno Pereira  
Date: 
Feb 2004.  

B.1.5.55 Member Function Documentation 
voi  NetworkLayers::handleMessaged ( cMessage * msg ) [virtual] 

  

Process messages received.  
Verifies arrival gate of the messages, and acts accordinglly
Parameters: 

ms   g - cMessage* : Message received. 

voi  NetworkLayers::initialized  (  ) [virtual]

  
Do initialization of class data members and any other initialization procedure necessary. 
retrive module parameters, by reference  

NetworkLayers::Module_Class_Members ( NetworkLayers , 
 cSimpleModule , 
 0  
 )  
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voi  NetworkLayers::processMessageFromAppd ( cMessage * msg ) [private] 
  process messages received from application layer 

voi  NetworkLayers::processMessageFromPhyd ( cMessage * msg ) [private] 

  

process messages received physical interface/channel  
Assumes that a “intelligent” switching device is interconnecting the nodes, therefore all 
messages received are passed up to application layer. 
Parameters: 

ms   g - cMessage* : Message received. 

B.1.5.56 Member Data Documentation 
char NetworkLayers::ipAddr[20] [private] 
  IP address.  

cPar* NetworkLayers::ipProcessing [private] 
  retrived module parameter; IP Processing Delay 

char NetworkLayers::macAddr[20] [private] 
  ethernet MAC address 

cPar* NetworkLayers::macProcessing [private] 
  retrived module parameter; MAC Processing Delay 

B.1.5.57 Output Class Reference 
Inheritance diagram for Output:  

 

B.1.5.58 Public Member Functions 
  Module_Class_Members (Output, cSimpleModule, 0) virtual void initialize() 

  Do initialization of class data members and any other initialization procedure
necessary.  

virtual void  handleMessage (cMessage *msg) 
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  Process messages received.  
virtual void  finish () 
  Saves summary results (if any).  
 

B.1.5.59 Protected Attributes 
unsigned long  lastSequenceNumber
cStdDev  endToEndRTimeStats

  last sequence number received data collected; End to End response time 
standard deviation  

cOutVector  endToEndRTime
  data collected; End to End response vector  

B.1.5.60 Detailed Description 
Output.cpp Output simple module class definition.  
Receives output data. Records statistics about the received data. Namely the end-to-end 
response time. 
Author: 
Nuno Pereira  
Date: 
Feb 2004.  

B.1.5.61 Member Function Documentation 
voi  Output::finishd (  ) [virtual]

  
Saves summary results (if any). 
Statistics of messages received. 

voi  Output::handleMessaged ( cMessage * msg ) [virtual] 

  

Process messages received.  
At each received message outputs a message and records appropriate statistics. 
Parameters: 

ms   g - cMessage* : Message received. 

Output::Module_Class_Members( Output  , 
 cSimpleModule , 
 0  
 )  
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  Do initialization of class data members and any other initialization procedure necessary.  

B.1.5.62 Member Data Documentation 
cOutVector Output::endToEndRTime [protected] 
  data collected; End to End response vector 

cStdDev Output::endToEndRTimeStats [protected] 

  last sequence number received data collected; End to End response time standard 
deviation  

uns gned long i Output::lastSequenceNumber [protected]

B.1.5.63 Switch Class Reference 
Inheritance diagram for Switch:  

 

B.1.5.64 Public Member Functions 
  Module_Class_Members (Switch, cSimpleModule, 0) virtual void 

initialize() 

  Do initialization of class data members and any other initialization 
procedure necessary.  

virtual void  handleMessage (cMessage *msg) 
  Process messages received.  
virtual void  finish () 
  Saves summary results (if any).  
 

B.1.5.65 Private Member Functions 
void  tokenize (const char *str, std::vector< double > &array) 
  Tokenize string containing numbers separated by “:” into the array.  
 

B.1.5.66 Private Attributes 
cPar *  wcDelay
  retrieved module parameter; Worst case delay, introduced by the switch
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to each packet
D:\OMNeT++\models\EthernetIP\doc\sourcedoc\classSwitch.html 
- r0

int  numInterfaces
  number of interfaces connected to the switch  
SwitchInterface * switchInterface
  array of interfaces of the switch (one for each input/output gates pair)  

B.1.5.67 Detailed Description 
Switch simple module class definition.  
This is a model of a switch for an Ehternet/IP network. 
It delivers a copy of the received packets to all corresponding ports, where consumers of 
the connection are present. 
To know where to deliver the packets, it uses parameters “connectionIDProducedList” and 
“connectionIDConsumedList” of the connected modules. 
Warning: 
To be able to make decisions where to deliver the received packets, it depends on the 
connected modules having parameters “connectionIDProducedList” and 
“connectionIDConsumedList”. These parameters are defined by a string, with the several 
connection IDs separated by “:”. 

The connection IDs in the parameters are compared with the last byte in the mac 
address. Therefore, this assumes a direct mapping of the connectionID to the last 
byte in the ethernet address. 

Attention: 
Only supports multicast frames 
Author: 
Nuno Pereira  
Date: 
Fev 2004.  

B.1.5.68 Member Function Documentation 
voi  Switch::finishd  (  ) [virtual]

  Saves summary results (if any). 

voi  Switch::handleMessaged ( cMessage * msg ) [virtual] 

  

Process messages received.  
The messages shall be processed according to the receiving gate. The messages received 
will be processed and sent to the apropriate output gates, after a defined delay. 
Parameters: 
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ms   g - cMessage* : Message received. 

Switch::Module_Class_Members( Switch  , 
 cSimpleModule , 
 0  
 )  
 

  Do initialization of class data members and any other initialization procedure necessary.  

void Switch::tokenize ( const char *  str,  
 std::vector< double > & array
 ) [private]  

  

Tokenize string containing numbers separated by “:” into the array.  
Parameters: 

str  - const char* : String to be parsed  
array  - std::vector<double>& : Object array to hold the resulting vector of 

numbers  
Returns: 
The object array with the resulting vector of numbers  

B.1.5.69 Member Data Documentation 
int S witch::numInterfaces [private]

  number of interfaces connected to the switch 

Sw chInterface* it Switch::switchInterface [private]

  array of interfaces of the switch (one for each input/output gates pair) 

cPar* Switch::wcDelay [private] 
  retrieved module parameter; Worst case delay, introduced by the switch to each packet  

B.1.5.70 SwitchInterface Class Reference 
SwitchInterface class definition. More...  
List of all members. 
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B.1.5.71 Public Member Functions 
  SwitchInterface () 
  ~SwitchInterface () 
 

B.1.5.72 Public Attributes 
InterfaceConnection *  intConnection
  array of Deliver Indexes (one per produced connection)  
int  numProducedConnections
  number of connections delivered from this interface  
int  numConsumedConnections
  number of connections to be delivered to this interface  
int  numDeliverIndexes

  count of indexes of the out gates for packetes received in this
interface  

int *  producedConnections
  array if connectionIDs delivered from this interface  
int *  consumedConnections
  array if connectionIDs to be delivered to this interface  

B.1.5.73 Detailed Description 
SwitchInterface class definition.  
A “helper” class. Stores information about each module connected, in order to allow the 
Switch to make decisions on where to deliver each packet 
Author: 
Nuno Pereira  
Date: 
Feb 2004.  

B.1.5.74 Constructor & Destructor Documentation 
SwitchInterface::SwitchInterface(  ) [inline] 
SwitchInterface::~SwitchInterface(  ) [inline] 

B.1.5.75 Member Data Documentation 
int*  SwitchInterface::consumedConnections
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Appendix B. 

  array if connectionIDs to be delivered to this interface 

InterfaceConnection* SwitchInterface::intConnection 
  array of Deliver Indexes (one per produced connection) 

int S witchInterface::numConsumedConnections

  number of connections to be delivered to this interface 

int S witchInterface::numDeliverIndexes 

  count of indexes of the out gates for packetes received in this interface 

int S witchInterface::numProducedConnections

  number of connections delivered from this interface 

int*  SwitchInterface::producedConnections

  array if connectionIDs delivered from this interface 
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