

Escola de Engenharia
Universidade do Minho

Nuno Alexandre Magalhães Pereira

A Framework for the Timing Analysis of
Ethernet-based Factory-floor Networks

Braga, 2004

A Framework for the Timing Analysis of Ethernet-based
Factory-floor Networks

by

Nuno Alexandre Magalhães Pereira

A thesis submitted in partial fulfilment of the requirements for
the degree of

Master of Science

Department of Informatics

University of Minho

December 2004

Thesis Supervision:

Dr. Eduardo Manuel de Médicis Tovar

Computer Engineering Department of the

Polytechnic Institute of Porto

Thesis co-Supervision:

Dr. Paulo Martins de Carvalho

Informatics Department of the

University of Minho

UNIVERSITY OF MINHO

ABSTRACT

A FRAMEWORK FOR THE TIMING ANALYSIS OF
ETHERNET-BASED FACTORY-FLOOR NETWORKS

by Nuno Alexandre Magalhães Pereira

Throughout the years, researchers have developed and applied a considerable range of
theory to the validation of factory-floor distributed real-time systems. Nowadays, some of
those systems are based on Ethernet technologies. In fact, a number of characteristics are
boosting the eagerness of extending Ethernet to also cover factory-floor distributed real-
time applications. Full-duplex links, non-blocking and priority-based switching, bandwidth
availability, just to mention a few, are characteristics upon which that eagerness is building
up.

In the past few years, it is particularly significant the considerable amount of work that
has been devoted to the timing analysis of Ethernet-based technologies. It happens,
however, that the majority of those works are restricted to the analysis of subsets of the
overall computing and communication system, thus without addressing the system as a
whole. In fact, Ethernet technology, by itself, does not include features above the lower
layers of the communication stack. Where are the higher layers that permit building real
industrial applications? And, taking for free that they are available, what is the impact of
those protocols, mechanisms and application models on the overall performance of
Ethernet-based distributed factory-floor applications? This dissertation attempts to pave the
way towards providing some reasonable answers to these issues.

To this end, a few analysis approaches are explored with the purpose of setting a
framework for developing tools suitable to extract temporal properties of Commercial-Off-
The-Shelf (COTS), Ethernet-based factory-floor communication systems. The particular
case of Ethernet/IP is taken into the research work.

Two models, enabling finding end-to-end response times in Ethernet/IP based
distributed systems are provided. The first model is an analytical model, built upon
traditional real-time response time analysis, considering a number of worst-case
assumptions to derive the end-to-end response time bounds. The second model is a discrete-
event simulation model, providing an adequate solution to understand and analyse the
timing behaviour of actual systems, also facilitating approaches for timeliness evaluation
based on probabilistic measures of meeting deadlines. This may become relevant since
modern factory-floor systems tend to be more flexible and adaptive in their nature.
Additionally, results from applying both models are presented, and a discussion of the two
is provided.

 i

UNIVERSIDADE DO MINHO

RESUMO

ABORDAGENS À ANÁLISE TEMPORAL DE REDES BASEADAS
EM ETHERNET PARA AMBIENTES INDUSTRIAIS

por Nuno Alexandre Magalhães Pereira

Ao longo dos anos, diversos investigadores construíram e aplicaram uma quantidade
considerável de teoria à validação de sistemas tempo-real distribuídos, para ambientes
industriais. Actualmente, alguns destes sistemas são baseados em tecnologias de
comunicação Ethernet. Na realidade, existe um conjunto de características que estão a
aumentar a veemência para colocar tecnologias de comunicação baseadas em Ethernet em
ambientes industriais. Características como ligações full-duplex, comutação não bloqueante
e baseada em prioridades são apenas alguns exemplos que justificam tal veemência.

É particularmente significante a quantidade considerável de trabalho desenvolvido nos
últimos anos dedicado à análise temporal de tecnologias baseadas em Ethernet. No entanto,
acontece que a larga maioria destes trabalhos, limitam-se à análise de subconjuntos do
sistema de computação e comunicação, não considerando portanto uma visão sistémica. De
facto, a tecnologia Ethernet, por si só, não inclui funcionalidades acima das camadas mais
baixas da pilha protocolar de comunicações. Onde se encontram então as camadas
superiores, que permitem construir aplicações concretas? Adicionalmente, assumindo que
estas se encontram facilmente disponíveis, qual é o impacto, a um nível sistémico, da
introdução desses protocolos, mecanismos e aplicações no desempenho das aplicações
distribuídas baseadas em Ethernet? Esta dissertação empreende esforços no sentido de
fornecer algumas respostas razoáveis a estas questões.

Para este fim, algumas abordagens para análise temporal são exploradas com o intuito
de formar um enquadramento apropriado para o desenvolvimento de ferramentas e métodos
adequados à extracção das propriedades temporais de redes Ethernet para ambientes
industriais, baseadas em componentes disponíveis comercialmente. Neste trabalho é
tomado o caso particular de sistemas Ethernet/IP distribuídos.

Foram concebidos dois modelos que permitem encontrar o atraso ponto-a-ponto em
sistemas Ethernet/IP distribuídos. O primeiro é um modelo analítico, assente em conceitos
tipicamente utilizados em análises de sistemas computacionais tempo-real, que consideram
um conjunto de suposições sobre os cenários mais pessimistas de utilização dos recursos
em causa, para derivar os limites máximos do atraso ponto-a-ponto. O segundo modelo é
baseado em simulação discreta de eventos, possibilitando uma solução adequada para a
compreensão e análise do comportamento temporal de sistemas concretos. Este segundo
modelo facilita também a abordagem do problema de uma forma não determinística,
facultando medidas probabilísticas do cumprimento dos atrasos máximos impostos ao
sistema. Tais resultados tornam-se relevantes à luz da natureza mais adaptativa e flexível
dos sistemas industriais modernos. Adicionalmente, são apresentados resultados obtidos a
partir dos dois modelos, juntamente com uma discussão sobre ambos.

 iii

CONTENTS

1 OVERVIEW..1
1.1 INTRODUCTION ... 1
1.2 RESEARCH CONTEXT .. 2
1.3 HYPOTHESIS AND OBJECTIVES ... 3
1.4 OUTLINE OF THE DISSERTATION .. 3
1.5 RESEARCH CONTRIBUTIONS... 3

2 TECHNOLOGICAL CONTEXT: COMMUNICATION INFRASTRUCTURE.............................5
2.1 INTRODUCTION ... 5
2.2 ETHERNET REVIEW... 6
2.3 ETHERNET/IP (EIP)... 9

2.3.1 General Aspects... 9
2.3.2 CIP Messaging .. 11
2.3.3 Producer/Distributor/Consumer Model.. 12
2.3.4 Ethernet/IP Devices... 13
2.3.5 Defining an End-to-End Transaction.. 14
2.3.6 Assumptions... 14

2.4 SUMMARY ... 15
3 TECHNOLOGICAL CONTEXT: SIMULATION SOFTWARE ..17

3.1 INTRODUCTION ... 17
3.2 SIMULATION LANGUAGES .. 18
3.3 NETWORK SIMULATION PACKAGES ... 19
3.4 A FEW MORE DETAILS ON OMNET++ .. 21
3.5 SUMMARY ... 23

4 APPROACHES FOR TIMELINESS ANALYSIS..25
4.1 INTRODUCTION ... 25
4.2 BASIC CONCEPTS OF REAL-TIME SYSTEMS.. 25

4.2.1 Characterization of Tasks ... 26
4.2.2 Scheduling Tasks in Real-time Systems .. 27
4.2.3 Priority Assignment Schemes.. 28

4.3 ANALYTICAL-BASED TIMING ANALYSIS ... 29
4.3.1 Utilization-Based Tests ... 30
4.3.2 Response Time Tests.. 31
4.3.3 From Task to Message Schedulability Analysis.. 33

4.4 SIMULATION-BASED TIMING ANALYSIS .. 35
4.4.1 Meaningful Results from Simulation Output Data ... 36
4.4.2 Statistical Ground for the Analysis of Simulation Output Data ... 37
4.4.3 Non-Terminating Simulations ... 39
4.4.4 Other Measures of Performance... 41

4.5 SUMMARY ... 42

 v

5 WORST-CASE BASED ANALYTICAL MODEL .. 43
5.1 INTRODUCTION..43
5.2 END-TO-END LATENCY FORMULATION ...43
5.3 LATENCY INTRODUCED BY THE EA (QEAM)..44
5.4 LATENCY INTRODUCED BY THE BACKPLANE (QBM)...45
5.5 LATENCY INTRODUCED BY THE SWITCH (LISW)...46
5.6 NUMERICAL EXAMPLE..47
5.7 SUMMARY ...48

6 SIMULATION BASED TIMING ANALYSIS OF EIP NETWORKS.. 49
6.1 INTRODUCTION..49
6.2 THE REMOTE IO NODE ...49
6.3 THE CONTROLLER NODE ..53
6.4 THE SWITCH NODE..54
6.5 EXAMPLE SCENARIO ...55

6.5.1 Statistical Results of the Simulation ..57
6.6 SUMMARY ...59

7 CONCLUSIONS AND FUTURE WORK... 61
7.1 SUMMARY AND CONCLUSIONS ...61
7.2 FUTURE WORK..64

7.2.1 Fine-tuning and Thorough Validation of the Models ...64
7.2.2 Development of a Wrapping Layer ...64
7.2.3 Introduction of Less Pessimistic Assumptions ..64
7.2.4 Different Measures of Performance in Simulation Studies...65

REFERENCES .. 67
GLOSSARY ... 73
INDEX .. 79
APPENDIX A .. 83

A.1 NETWORK DEFINITION SCHEMA DOCUMENTATION...83
APPENDIX B... 91

B.1 SIMULATION MODEL DOCUMENTATION...91
B.1.1 Simple Modules..91
B.1.2 Compound Modules ...99
B.1.3 Channels ..106
B.1.4 Messages..107
B.1.5 Class Documentation...110

vi

LIST OF FIGURES

FIGURE 1. TYPICAL MODERN SWITCH INTERNALS ..7
FIGURE 2. ETHERNET MAC HEADER WITH 802.1Q TAGGING ...8
FIGURE 3. CIP COMMON LAYERING OVER DIFFERENT NETWORKS ...10
FIGURE 4. CIP AND ETHERNET IN THE TCP/IP LAYERING MODEL ...11
FIGURE 5. SOURCE/DESTINATION MODEL ILLUSTRATION...12
FIGURE 6. PRODUCER/DISTRIBUTOR/CONSUMER MODEL ILLUSTRATION ...12
FIGURE 7. EIP BASIC NODES..13
FIGURE 8. EIP END-TO-END TRANSACTION...14
FIGURE 9. OMNET++ MODULE HIERARCHY...22
FIGURE 10. OMNET++ GATES AND CONNECTIONS ..22
FIGURE 11. TASK ATTRIBUTES ..27
FIGURE 12. RM AND EDF SCHEDULE EXAMPLES ON 1 PROCESSOR...29
FIGURE 13. END-TO-END COMMUNICATION DELAY ...34
FIGURE 14. SIMULATION DEVELOPMENT..35
FIGURE 15. CONTROLLER: MESSAGE DELAY COMPONENTS...45
FIGURE 16. BACKPLANE MEDIUM ACCESS CONTROL SCHEME..45
FIGURE 17. EXAMPLE SCENARIO...47
FIGURE 18. EIP SIMULATION MODEL HIERARCHY IN OMNET++...49
FIGURE 19. BACKPLANE NED DEFINITION. ..50
FIGURE 20. ETHIPADAPTER NED DEFINITION. ..51
FIGURE 21. OMNET++ ETHIPIOMODULE COMPOSITION. ..52
FIGURE 22. IOCONNECTION CLASS MESSAGE HANDLER C++ CODE..52
FIGURE 23. OMNET++ ETHIPIOMODULE NED CODE FOR PARAMETER CONFIGURATION.53
FIGURE 24. ETHIPIOMODULE PARAMETER CONFIGURATION THROUGH INITIALIZATION FILE.................................53
FIGURE 25. OMNET++ CONTROLLER MODULE COMPOSITION..54
FIGURE 26. ETHERNET SWITCH NED DEFINITION. ..54
FIGURE 27. ETHERNET CHANNEL DEFINITION IN OMNET++..55
FIGURE 28. SIMULATED SYSTEM DEPICTION. ...56

 vii

LIST OF TABLES

TABLE 1. EXAMPLE TASK SET..29
TABLE 2. ASSUMPTIONS FOR DEVICE PARAMETERS..47
TABLE 3. TRANSACTIONS RESPONSE TIME RESULTS ...47
TABLE 4. END-TO-END TRANSACTIONS ..56
TABLE 5. INPUT CONNECTIONS ..57
TABLE 6. CONNECTIONS AT THE CONTROLLER ...57
TABLE 7. OUTPUT CONNECTIONS ..57
TABLE 8. RESULTS OF SIMULATION OUTPUT USING REPLICATION/DELETION ..58
TABLE 9. ANALYTICAL MODEL RESULTS FOR PREVIOUSLY SIMULATED SCENARIO (FIGURE 28)62
TABLE 10. COMPARISON OF SIMULATION WITH ANALYTICAL MODEL RESULTS...62

viii

LIST OF ACRONYMS

ARP Address Resolution Protocol
CAN Controller Area Network
CIP Control and Information Protocol
CORBA Common Object Request Broker Architecture
CoS Change-of-State
COTS Commercial-Of-The-Shelf
CSMA/CD Carrier Sense Multiple Access with Collision Detection
CTDMA Concurrent Time Domain Multiple Access
DCOM Distributed Component Object Model
DEC Digital Equipment Corporation
EDF Earliest Deadline First
EIP Ethernet/IP
FPS Fixed Priority Scheduling
ICMP Internet Control Message Protocol
IEEE Institute of Electrical and Electronics Engineers
IGMP Internet Group Management Protocol
IP Internet Protocol
IPC Inter-Process Communication
Java/RMI Java Remote Method Invocation
MAC Medium Access Control
MAP Manufacturing Automation Protocol
NED NEtwork Description
OMNeT++ Objective Modular Network Testbed in C++
OPC OLE for Process Control
OSI Open Systems Interconnection
PRNG Pseudo-Random Number Generator
RARP Reverse Address Resolution Protocol
RIO Remote Input/Ouptut (IO)
RM Rate Monotonic
RPI Requested Packet Interval
SNMP Simple Network Management Protocol
TCP/IP The Internet protocol suite
TCP Transmission Control Protocol
UDP User Datagram Protocol
TDMA Time Division Multiple Access
WCET Worst-case Execution Time
WWW World Wide Web

 ix

ACKNOWLEDGMENTS

First of all I want to thank my supervisor, Dr. Eduardo Tovar, for his guidance, advice,
support, and for always being available for insightful and enjoyable conversations. I would
also like to thank Dr. Paulo de Carvalho for taking interest in my work and for is
understanding through the development process of this dissertation.

The work leading up to this thesis was done at the IPP-HURRAY! Research Group, at
the School of Engineering of the Polytechnic Institute of Porto. Working at IPP-HURRAY!
Has been very stimulating and instructive, and the atmosphere in the group has given rise to
several interesting discussions and ideas, on topics related to my work at different levels
and otherwise interesting topics. The pleasant research atmosphere at the group is of course
a product of all the members of the group. My appreciation to all of you. To Berta Batista,
Dr. Mário Alves, Dr. Luís Ferreira, Filipe Pacheco and many thanks to Dr. Miguel Pinho.

Thanks also to Pedro Fortuna, for several interesting discussions and ideas on
everything concerning computers.

My gratitude to my Parents, José and Odete, for all the support. And, finally to adorable
Eduarda, for standing by me and making life more pleasant.

x

C h a p t e r 1

OVERVIEW
1 Overview

1.1 Introduction
Today, high innovation-rate companies already make more than 60% of their profit on

products less than two years old. Actually, in many industries, product lifecycles are
halving every five years [1]. It is becoming less and less viable to sell from stock and have
high value finished goods tying up capital. To satisfy the needs from a variety of clients,
manufacturing companies are increasingly focusing on agility of operation. To serve these
needs, rapid sequencing, configuration and reconfiguration of manufacturing equipment are
essential.

In such context, organisational and supply chain agility are becoming key requirements
for manufacturing in any sector. From order receipt, through manufacturing and product
delivery, an enormous number of variants that need to be handled are introduced, turning
information management a vital strategic asset for any manufacturing company today.

The factory-floor, being a central component of every manufacturing enterprise, is the
starting point for greater information connectivity. Computer-based factory-floor controls
for manufacturing machinery, materials handling systems and related equipment generate a
wealth of information about productivity, product design, quality and delivery. Thus,
factory-floor networking arises as a prominent building-block for unleashing this
information in a cost-effective manner [2].

In a typical automated factory-floor, there will be a controlled system, for example
robots or assembling stations and a controlling system that can include the computers and
human interfaces that manage and coordinate the activities on the factory-floor. The
controller system interacts with the controlled system based on the information available,
collected from various sensors. It is imperative that the state of the controlled system, as
perceived by the controlling system, is consistent with its actual state. Otherwise, the
effects of the controlling systems’ activities may lead to serious failures. Hence, periodic
monitoring of the environment as well as timely processing of the sensed information is
necessary. Noticeably, timely delivery support from the network is essential to have
distributed automation applications in the factory-floor.

Consider, for example, a sub-system composed of a conveyer belt, where manufactured
parts are carried after assembly. A robotic actuator is responsible for distributing the parts
between several packaging stations. The information about where to deliver the parts is
collected from another sub-system that gathers information about the available packaging
stations. In such system, a timely coordination between the information collected from
sensors that detect the parts on the conveyer belt, the packing sub-system and the robotic

 1

Chapter 1. Overview.

actuator is essential for this system [3]. Failing to do so may result in the need for human
intervention and possibly halting the production system.

A system where its correctness depends not only on the logical result of computation,
but also on the time at which the results are produced is defined as a real-time computing
system [4].

1.2 Research Context
The timeliness analysis of real-time systems is usually exploited in a framework

dominated by the notion of absolute temporal guarantees. In those systems, computational
and communication loads are presumed to be bounded and known, and the worst-case (at
least believed to be) conditions are assumed. In this way, the problem of engineering
distributed real-time systems, of which factory-floor distributed computing systems are a
representative example, becomes a problem of devising the appropriate tools and methods
to assure that all deadlines are met in all circumstances [5].

To this end there are generally three, usually alternative, approaches. The first consists
of building a prototype of the system and perform extensive testing. Although this is
conceptually a simple method, in practice, it is usually hindered by many difficulties. To
build the prototype may take a considerable amount of resources and even once the
prototype is built, it may be impossible to consider and analyse all possible interactions that
affect the timing behaviour of the system.

Another option is to develop an analytical model of the worst-case timing behaviour of
the system and draw conclusions based on the model. Much research has been done over
the years to examine system behaviour based on several real-time system models. However,
and for complex distributed systems, analytical models tend to be overwhelmed with
simplifications that often lead to very pessimistic assumptions, and therefore to very
pessimistic worst-case results. Even knowing that a number of existing techniques may
potentially be used and adapted to reduce this pessimism level, the benefit may appear at
the cost of adding rather complex abstractions, such as precedence relationships [6], event
phasing [7, 8] and inheritance of time characteristics [9, 10]. These, unfortunately, may lead
to intractable analytical models, thus making it further difficult to handle and reason the
analytical abstractions.

To add on top of this, some characteristics of the system may not lend themselves to
deterministic analysis techniques. For example, the arrival pattern of messages or
communication times may not be completely deterministic and conversely can be
characterised in a probabilistic manner. The emergence of “more complex” distributed
systems, with a more flexible and adaptive nature creates the eagerness to approach the
timeliness evaluation problem in a different way: instead of using a guaranteed approach,
why not tackling the problem by trying to find a probabilistic measure of meeting
deadlines?

It is in this context that simulation (the third alternative for the timeliness evaluation of
a system) can emerge as an adequate solution to tackle the problem of engineering complex
distributed real-time systems. On the other hand, the relatively recent advent of fast and
inexpensive computational power allows the approach of trying to model the system as
faithfully as possible, and then use simulation to obtain accurate characteristics. The use of

2

Chapter 1. Overview.

simulation models that mirror the behaviour of the system under analysis may provide a
reasonable framework for the timeliness evaluation of such distributed real-time systems. In
this dissertation, such approach is applied to a specific COTS technology, Ethernet/IP [11].

1.3 Hypothesis and Objectives
This dissertation explores the development of tools suitable to extract temporal

properties of Ethernet-based factory-floor communication systems. This problem can be
tackled using different and possibly inter-linked methods.

A major question to be answered is to what extent simulation can be used to extract
useful timeliness results about the modelled systems.

1.4 Outline of the Dissertation
This dissertation will proceed by firstly presenting the technological context behind it.

Details of the factory-floor technology chosen to support the analysis of an overall
communication infrastructure is presented (Chapter 2). Then, in Chapter 3, some of the
extant simulation tools for the development of network simulation models are surveyed.

In Chapter 4, the basis for the timeliness approaches followed is presented. Some
introductory real-time systems concepts are laid out to introduce the foundations of
traditional response time analysis, also applicable to the analysis of distributed systems.
Then, the statistical grounds for adequately extracting performance measures from
simulation output data are overviewed.

The next two chapters present the models developed for the timeliness analysis of
Ethernet/IP-based distributed systems. These models are based on the two approaches
introduced in Chapter 4. Therefore, in Chapter 5, a worst-case analytical model is proposed.
In Chapter 6, a simulation model for Ethernet/IP, using a specific simulation tool is
proposed.

The closing chapter (Chapter 7) of the dissertation presents a brief summary and
conclusions of this work, along with a discussion on the results obtained by both models
developed. It also introduces a number of topics for future research. Among these topics,
the advancement of some options for the extraction of other measures of performance from
simulation models, assumes a particular relevance.

1.5 Research Contributions
The main contributions of this dissertation are the following:

• an analytical model for EIP distributed systems, providing the worst-case end-to-
end response time of distributed transactions [12];

• a simulation model for EIP distributed systems [13];
• approach to a framework for extracting measures of performance from simulation

models, including performance measures other than means [14];
• a framework for the extraction of overall temporal properties of COTS factory-

floor communication systems through the combination of different, but potentially
integrated, types of analysis [15].

 3

C h a p t e r 2

TECHNOLOGICAL CONTEXT:
COMMUNICATION INFRASTRUCTURE

2 Technological Context: Communication Infrastructure

2.1 Introduction
Over the last decade, factory-floor networking has evolved from relatively passive and

isolated data collection or reporting roles to feedback control and diagnostics applications,
integrated with enterprise-wide information systems. Modern industrial systems must be
able to exploit commercial information technologies, including Commercial-Off-The-Shelf
(COTS) operating-systems; TCP/UDP/IP based applications and general purpose networks.

However, it is interesting to observe that the development of factory-floor networking
has been far slower than the development of office networks. One of the reasons for this
delay is related with the timing requirements found in factory-floor applications. To have
precise control over the data-sampling task, a common solution used to be employing point-
to-point wiring. While being a simple solution, it is important to note that traditional point-
to-point wiring is very limited in the information it transmits or receives from the field,
because only the process variable is communicated, without any diagnostic or health
information. The first step towards an actual factory-floor networking environment was the
fieldbus concept. Fieldbusses are a cost-saving solution (being cabling one of the major
cost components in any factory-floor installation) that provides much more information and
flexibility. Nevertheless, fieldbus technologies present some important drawbacks. The
fieldbus market is a small one (when compared to the office network market), where the
prices are fairly high and the technology development is rather slow. Conversely, the office
network market is rapidly evolving, with enormous data throughput increases and price
drops of equal magnitude. Particularly, the high-speed properties of Ethernet, its familiarity
and low cost make it a potential candidate for factory-floor communications.

Ethernet was, until recently, generally known for exhibiting unstable performance (e.g.
unbounded delay) under heavy load. However, advances in switched-Ethernet made
Ethernet more predictable, and have increased the eagerness to introduce Ethernet-based
technologies into the factory-floor [16, 17].

Still, there are obstacles to overcome. Indeed, a few research efforts on Ethernet
technologies have been focusing on timeliness, trying to find solutions to issues such as
bounded response time evaluation, optimal scheduling policies, switching topologies or
clock synchronisation [18]. However, they essentially consider the timing characteristics at
the Data Link Layer, meaning that an overall approach embracing a fully defined protocol
stack is still lacking.

 5

Chapter 2. Technological Context: Communication Infrastructure.

While until a couple of years ago a valid justification for this gap could eventually be
the lack of technologies offering an overall ensemble of protocols and mechanisms [19],
this justification cannot serve that purpose anymore. In fact, there are already some COTS
solutions for Ethernet-based systems providing a fully-defined communication protocol
stack. One of such solutions, based on encapsulation technologies, is Ethernet/IP (EIP),
where IP stands for “Industrial Protocol“.

In the next section some further details will be surveyed on Ethernet technologies, in
particular those characteristics enabling its use to support real-time distributed systems.
Then, Section 2.3 is devoted to describing the more important details related to Ethernet/IP
technologies.

2.2 Ethernet Review
Ethernet is a set of network cabling and signalling specifications originally developed

by Xerox, in the late 1970. It was called Ethernet after the luminiferous ether as a way of
describing an essential feature of the system: the physical medium (i.e., a cable) carries bits
to all stations, in a way analogous to the luminiferous ether that once was thought to
propagate electromagnetic waves through space.

In 1980, Digital Equipment Corporation (DEC), Intel and Xerox began joint promotion
of this baseband, Carrier Sense Multiple Access/Collision Detection (CSMA/CD)
computer communications network over coaxial cabling, and published the “Blue Book
Standard” for Ethernet Version 1. This standard was later enhanced, and in 1985 Ethernet
Version 2 was released.

The Institute of Electrical and Electronics Engineer’s (IEEE’s) Project 802 then used
Ethernet Version 2 as the basis for the 802.3 CSMA/CD network standards. The IEEE
802.3 standard is generally interchangeable with Ethernet Version 2, with the greatest
difference being the construction of the network packet header. For the sake of precision, it
is important to point out that, in the context of this document, 803.2 would be a more
appropriate terminology than Ethernet, when referring to the family of CSMA/CD-based
Medium Access Control (MAC) protocols.

A complete description of all Ethernet specifications is far outside the scope of this
dissertation, and for further details the reader should refer to the IEEE 802.3 standard [20].

Without going into details, the general idea of the CSMA/CD MAC protocol can be
described in the following way. When a station wants to transmit, it listens to the cable. If
the cable is busy, the station waits until it goes idle. Otherwise, it transmits immediately. If
two or more stations begin transmitting on an idle cable simultaneously, the messages will
collide. All colliding stations then terminate their transmission, wait a random time, and
repeat the whole process all over again [21].

In a heavily loaded (in terms of traffic volume) network, a station can experience an
unbounded number of collisions and, therefore, the time to transmit a frame is also
unbounded, justifying the argument of non-deterministic behaviour frequently utilised
against the use of Ethernet for distributed control applications in the factory-floor.
Determinism enables systems designers to accurately predict the worst-case transmission
delay. Another requirement for factory-floor networks is high repeatability (or low jitter);

6

Chapter 2. Technological Context: Communication Infrastructure.

That is, the guarantee that a periodic message is transmitted successfully almost
periodically. This requirement was also difficult to attain with former Ethernet-based
technologies.

Developments in Ethernet technology have improved the determinism, repeatability and
performance of Ethernet to a great extent. Next, a briefly survey some of those
developments is made.

A major step toward deterministic and repeatable behaviour in Ethernet networks
resides in the elimination of the random behaviour of CSMA/CD, by avoiding collisions in
the network. This can be achieved by using specialised hardware at the heart of the
communication infrastructure with an array of ports to which all the communicating
devices are connected to. This specialised hardware, called switching hubs, layer 2 switches
or simply switches, allow traffic to be relayed between any two ports. Current switch
technology does this operation at very high speeds and introducing, and extremely low
latency.

Switch Fabric

MAC PHY TxRx
MAC PHY TxRx

MAC PHY TxRx

Port 1
Port 2
Port 3

Switch Control
Lookup Engine

LED Control

Figure 1. Typical modern switch internals

Most modern Ethernet switches (internals depicted in Figure 1) support full duplex
operation, allowing simultaneous two-way transmission over point-to-point links. Since
switches provide a separate collision domain for each port, using full-duplex
communication, collisions do not exist at all.

Recent switches typically announce wire-speed and non-blocking operation. Wire-speed
means that all ports of a switch can simultaneously transmit or receive at their full bit rates.
This requires that the switch fabric can operate at a bit rate equalling to the aggregate
speeds of all the ports. For example, 24 full-duplex ports operating at 200 Mbps (100 Mbps
in each direction) implies a fabric switching at 4.8 Gbps (24×200 Mbps). A switch is non-
blocking if it can forward a message to the destination port as long as that port is free, while
a blocking switch may not be able to forward a message to a free port due to internal
conflicts in the switch fabric.

If traffic is sent to an output port at a higher rate than its capacity, packets must be
queued. Queuing exists in any switch, regardless of whether it is full wire-speed or not, and
the analysis of the queuing delay depends on knowledge on the input traffic pattern. To
alleviate switch queuing problems, support for message prioritisation (IEEE 802.1p) was
introduced. The standard specifies a layer 2 mechanism for giving mission-critical data
preferential treatment over non-critical data [20, 22]. The concept, driven by the multimedia

 7

Chapter 2. Technological Context: Communication Infrastructure.

industry, is based on priority tagging of packets and implementation of multiple queues to
discriminate packets. For tagging purposes, IEEE 802.3q [20] defines an extra field for the
Ethernet MAC called Tag Control Info (TCI), containing 3 priority bits, thus the standard
defines 8 different levels of priority (Figure 2).

Destination Source Tag Type Payload FCS

0x8100 XXX X 0xXXX

3-bit 802.1p Priority Field

Canonical 1 bit

12-bit 802.1q VLAN Identifier

Tagged frame Type interpretation
Figure 2. Ethernet MAC header with 802.1q tagging

Taking a closer look at Figure 2, it is possible to observe that the tag contains more than
just priority bits. It also contains a 12-bit VLAN identifier. This field is used in advanced
switches to allow logically separated networks - virtual LAN (IEEE 802.1q). VLANs
permit configuring the switch so that its ports are subdivided into different broadcast
groups, such that all packets received on one port of a group will only be transmitted to the
ports on the same group, thus isolating broadcast traffic between logically separated
networks (each group).

Several fault-tolerance mechanisms are available through spanning trees and port
trunking. The Spanning Tree Protocol [20] can be used to provide redundant network paths,
still protecting against network loops. Port Trunking establishes backbone links by treating
multiple parallel links as a single network pipe. It also provides link redundancy, i.e., traffic
on any failed link comprising a network trunk, automatically switches over to the other
links in the trunk.

By itself, Ethernet only supports transmission of frames in a LAN. Ethernet lacks more
complex features required for a fully functional LAN. Generally, Ethernet networks support
one or more communication protocols that run on top of Ethernet and provide sophisticated
data transfer and network management functions. It is the communication protocol that
determines the level of functionality supported by the network. Protocols (such as
AppleTalk, Inter-Process Communication (IPC) or Manufacturing Automation Protocol
(MAP)) have been implemented over Ethernet. Of these, TCP/IP is the most popular, due to
the emergence of the global Internet, including the World Wide Web (WWW). Although
TCP/IP runs on physical media other than Ethernet, and Ethernet supports other
communication protocols, the two have become increasingly linked.

Throughout the years, Ethernet has become a de facto standard, supporting many widely
spread upper layer protocols like the TCP/IP stack, including the vast range of TCP/IP’s
stack application protocols such as FTP, HTTP or SNMP. This facilitates the use of
Ethernet and allows easily integrating many COTS software components such as OLE for

8

Chapter 2. Technological Context: Communication Infrastructure.

Process Control (OPC), Microsoft Distributed Component Object Model (DCOM),
Common Object Request Broker Architecture (CORBA), Java/Remote Method Invocation
(RMI), and many others.

To summarise, today’s Ethernet technology offers the following main interesting
features for factory-floor networks:

• generous bandwidth (e.g. 10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps);

• deterministic network access delay, due to switching principles and full-duplex
links;

• priority handling (IEEE 802.1p), a basic support mechanism for real-time
communication;

• broadcast traffic isolation and enhanced security through VLANS;

• reliability improved using Spanning Tree Protocol on redundant links;

• de facto standard supporting many widely spread upper protocol stacks.

2.3 Ethernet/IP (EIP)

2.3.1 General Aspects
Ethernet/IP (EIP), is a communication system suitable for use in industrial

environments and time-critical applications [11]. It is an open industrial networking
standard that takes advantage of COTS Ethernet communication chips and physical media,
implementing a full suite of control, configuration and data collection services on top of an
Ethernet network.

EIP makes use of an open protocol named Control and Information Protocol (CIP). CIP
is an Application Layer protocol that implements a distributed object model. The CIP
protocol specification [23] is quite extensive. Mainly, it defines the abstract object
modelling used to describe the suite of communication services available, the externally
visible behaviour of a CIP node and a common means by which information within a CIP-
based network is exchanged. It also defines the messaging protocol used and the
communication objects necessary to manage and provide run-time exchange of messages.

In addition, the CIP protocol specification also includes a fairly large collection of
commonly used objects such as analogue Input/Output points, position sensor, AC/DC
drive, etc, called the General Object Library. To avoid having devices of similar
functionality from different vendors described with dissimilar object structures, devices of
similar functionality are grouped into device types, with an associated device profile that
describes the objects (some required, some optional) and the behaviour associated with that
particular type of device.

The CIP protocol specification also made provisions for configuring the devices
defining an Electronic Data Sheet (EDS) format to provide a full description of all
configurable information of a device.

 9

Chapter 2. Technological Context: Communication Infrastructure.

CIP is implemented on top of several different networks: DeviceNet [24], ControlNet
[25] and Ethernet, allowing transparent application-level interoperability between factory-
floor equipment. Figure 3 depicts CIP’s common layering on top of the different networks
with the corresponding mappings to the Open Systems Interconnection (OSI) reference
model.

Data Link Layer

Transport Layer

Physical Layer

Network Layer

Application Layer

Session and
Presentation Layers

Semi-
conductor

AC Drives Pneumatic
valves

Application Object Library

Position
controller

Other
profiles

CIP Messaging

DeviceNet
Transport

ControlNet
Transport

Ethernet DLL
Future ?

(ATM, …)

IP

TCP
Encapsulation

UDP

DeviceNet
Phy. Layer

ControlNet
Phy. Layer

Ethernet
Phy.Layer

DeviceNet DLL
(CAN)

ControlNet DLL
(CTDMA)

Ethernet DLL
(CSMA/CD)

Figure 3. CIP common layering over different networks

 DeviceNet [24] was the first member of this protocol family and it is a CIP
implementation of the Controller Area Network (CAN) protocol layer. In its typical form,
(ISO 11898, [26]) CAN only defines the Data Link Layer (DLL) and Physical Layer of the
7-layer OSI reference model, while DeviceNet covers the upper layers. The low cost of
implementation and the ease of use of DeviceNet has led to a considerable popularity,
nevertheless, it is limited to the small payload of the CAN protocol (8 bytes) and to the
maximum 1 Mbps bandwidth obtainable with CAN.

ControlNet [25], introduced in 1997, essentially implemented the same protocol on a
new physical layer, based on a specific method called Concurrent Time Domain Multiple
Access (CTDMA). Weighed against CAN, CTDMA allows a higher throughput (5 Mbps),
induces strict determinism and repeatability, while extending the length of the bus.
ControlNet comes, however, with a fairly high price tag, being its usage restricted to the
more demanding applications.

EIP was the latest addition to the CIP family. It is based on Ethernet and implements the
CIP distributed object model using TCP/UDP/IP services. Figure 4 presents the relation of
CIP to other protocols in a TCP/IP conceptual model.

10

Chapter 2. Technological Context: Communication Infrastructure.

HTTP CIP SNMP DNS
Application Layer

UDP TCP

IP
Internet Layer

IGMP ARP RARP ...

Ethernet

Transport Layer

Host-to-network Layer
(OSI Data link+Physical)

Token Ring ARCnet …

…

ICMP

Figure 4. CIP and Ethernet in the TCP/IP layering model

2.3.2 CIP Messaging
In CIP-based networks the majority of the messaging performed is done through

connections. CIP connections define the packets that will be produced on the network, and
these can be of two types: Explicit or Implicit messaging.

Explicit messaging connections provide generic, multipurpose communication paths
between two devices. Explicit messages provide the typical request/response-oriented
network communication. Each request contains explicit information that the receiving node
decodes, acts upon, and to which generates an appropriate response.

Implicit messaging connections provide dedicated, special purpose communication
paths between a producing application object and one ore more consuming application
objects. They are called implicit messages because the data that will be exchanged is
identified at the time the connection is established and connection identifiers are assigned.
Then, each transmission contains only the current values for the application objects that
where agreed upon when the connection was established and the connection identifier, thus
having a very small overhead.

There are four principal types of Implicit messages: Polled, Strobed, Cyclic and Change
of State (CoS). With polled messages, a device assumes the role of master and sequentially
queries all of the slave devices by sending their output data and allowing them to reply with
their input data. Strobed is a special case of polled in which the master sends out a single
multicast request for data and the slaves sequentially reply with their data, requiring no
further messages from the master. Cyclic messages are produced on a predetermined rate
basis, defined by the Requested Packet Interval (RPI) parameter. In Change of State, as the
name suggests, messages are only produced in response to an event which caused the data
to change. Change of State also maintains a background cyclic rate so that consuming
applications know that the node is still online.

Implicit messaging is the messaging used for time critical I/O data, and therefore will
receive the focus of our attention, specially the Cyclic Implicit CIP connections.

 11

Chapter 2. Technological Context: Communication Infrastructure.

2.3.3 Producer/Distributor/Consumer Model
As mentioned in the previous section, underlying CIP messaging is a

producer/distributor/consumer model, replacing the more conventional source/destination
(master/slave) model. The producer/distributor/consumer model is also usually found in
other factory communication networks [27].

In a source/destination model (Figure 5), the source communicates with each
destination, one at a time. Real-time data must be adjusted to maintain accuracy as
communication takes place with each source, one at a time. Some of the destinations may
not need the information, so there is some bandwidth waste. Moreover, the delivery time
changes with the number of destination devices.

Work starts
now.

Work starts
now.

Work starts
now.

Work starts
now.

Figure 5. Source/destination model illustration

In the producer/distributor/consumer model (Figure 6) one producer broadcasts
(multicasts) the data once to all the consumers. All consumers see the data simultaneously,
and may choose whether to consume (receive) the data or not. Delivery time is consistent
and bandwidth usage is optimised, no matter how many consumers exist.

Work starts now.

Figure 6. Producer/distributor/consumer model illustration

In EIP networks, the distribution of messages is supported upon multicast UDP/IP that,
in turn, is mapped onto Ethernet multicast.

In multicast UDP/IP, packets are not transmitted directly to the IP address of the
destination node. Instead, they are transmitted to a specific address that identifies a group of
nodes – an IP multicast address. Nodes may joint/leave groups using Internet Group
Management Protocol (IGMP) messages. Generally, nodes will join multicast groups at
connection establishment time, using information exchanged during this process.

The advantages of using multicast UDP/IP are twofold: firstly, it is the lightest transport
layer, introducing the least amount of overhead for processing and transmitting each

12

Chapter 2. Technological Context: Communication Infrastructure.

message; secondly, multicast-based transmission facilitates the distribution of data to
multiple destinations.

2.3.4 Ethernet/IP Devices
EIP networks are constituted by three structuring types of nodes: Remote I/Os,

Controllers and interconnecting Switches. Diverse modules can compose the Remote I/O
and Controller nodes (Figure 7). Typically, a Controller is composed of a number of I/O
modules (labelled in the Figure 7 as I or O), several Controller modules (C) and one or
more Ethernet Adapters (EA). A Remote I/O node has no Controller modules.

EA

CIP
TCP/UDP

IP
Ethernet

I

C

Controller Remote IO

EA

CIP
TCP/UDP

IP
Ethernet

I

O

Backplane (CIP) Backplane (CIP)

……

Figure 7. EIP basic nodes

Within each node, the several modules communicate among them via a device-specific
backplane. The nodes communicate with each other via Switched Ethernet. Inside the node,
communication is based on CIP messages and, when the messages are to be delivered to
another node, these messages are encapsulated in TCP/UDP/IP packets by the Ethernet
Adapter.

In the case of time critical data, as referred earlier, these messages are encapsulated in
UDP/IP packets and delivered using multicast services. The periodicity of time critical data
CIP connections is maintained internally in each producing module. Each module maintains
a timer for the configured RPI of each connection.

In the following section, the diverse components of the end-to-end latency are
introduced, leading to a first delineation of the end-to-end delay in EIP to be analysed. It is
important to stress the fact that some of the architectural details and implementations are
open to alternative options from technology providers. The descriptions presented are a
result of information gathered from a technology provider, and of assumptions taken from
the available information. The general assumptions made on the devices and network
analysis are also within the next section.

 13

Chapter 2. Technological Context: Communication Infrastructure.

2.3.5 Defining an End-to-End Transaction
The several components considered to makeup an end-to-end EIP transaction are

illustrated using the following simple EIP network (Figure 8).

...

Ethernet Switch 1

 EA

CIP
TCP/UDP

IP
Ethernet

I

C

device-specific Backplane
(CIP messages)

Controller node 1

 EA

CIP
TCP/UDP

IP
Ethernet

device-specific Backplane
(CIP messages)

I

O

I

Remote IO node 1

Figure 8. EIP end-to-end transaction

The EIP transaction considered is an independent transaction, starting at the input
module of the Remote I/O (). After the hardware delay to energise the input and a user
defined filter delay, a message with the input data will be generated, at the periodicity
defined for the input data connection. This message will then suffer the contention caused
by the device backplane (), and will arrive at the Ethernet Adapter, where it is processed,
encapsulated and transmitted via the Ethernet communication interface (). With this, the
message arrives at the Ethernet switch, where it is relayed to the corresponding output
port(s), and later will arrive at the Controller Ethernet Adapter (). At the Ethernet
Adapter (), the message is processed, in order to be passed to the Controller module,
passing through the Controller backplane (). At the controller the input data will be
processed by a controller task, characterised by a worst-case response time, that generates
the corresponding output data (). The output data will be transmitted at a defined
periodicity and will go back through the inverse path (, ,), until it reaches the Ethernet
Adapter of the Remote I/O (), is processed and delivered to the output module that will,
in result, energise the corresponding output(s) ().

2.3.6 Assumptions
Before continuing, a few words on assumptions are worthy to be provided. Throughout

the development of the EIP models to be later described in this dissertation, a number of
assumptions where introduced in order to narrow, in some reasonable way, the number of
variables needed to be accounted for. Additionally, these assumptions also reflect some of
the implementation details specific of the considered EIP devices.

Thus, the following assumptions will be considered:

• traffic in the network is restricted and isolated;

• processing and network traffic related to the network setup period is negligible;

• only Cyclic Implicit CIP connections are assumed to exist in the network, and
their periods are known;

14

Chapter 2. Technological Context: Communication Infrastructure.

• the controller tasks are independent, execute periodically and have a bounded
worst-case response time;

• during task execution, the input data is processed and corresponding output
data is generated once;

• packet processing time in the Ethernet Adapter is characterised;

• time to transfer a frame in the Backplane is characterised;

• the input filter delay is a known variable, defined by the user;

• output module hardware delay is negligible;

• network data rate is known;

• switch latency and other switch processing delays are characterised;

• propagation delays are ignored.

2.4 Summary
Characteristics like generous bandwidths, switching technologies, priority handling and

support for widely spread upper protocol stacks are driving an increasing eagerness for
extending Ethernet to also cover factory-floor distributed real-time applications. This
chapter exposed the basics of Ethernet technology and the developments of factory-floor
communication systems driving that eagerness.

Additionally, the Commercial-Off-The-Shelf (COTS) factory-floor communication
system to be investigated – Ethernet/IP (EIP) – is introduced in this chapter. The
fundamentals of CIP, the application layer protocol used by EIP, were brought out, and
some details of the EIP devices considered for the analysis were conveyed. Finally, the
assumptions included in the analysis to be presented later in this dissertation were
enumerated.

 15

C h a p t e r 3

TECHNOLOGICAL CONTEXT:
SIMULATION SOFTWARE

3 Technological Context: Simulation Software

3.1 Introduction
Simulation is basically the imitation of the operation of a real-world system over time.

The availability of special-purpose simulation languages, increasing computing capabilities
at a decreasing cost per operation and advances in simulation methodologies, have made
simulation one of the most accepted tools in operations research and systems analysis [28].

Simulation, for the study of any system, usually involves the development of a model,
where the details and behaviour that affect the system under study are represented. A model
of a system can be classified, according to its nature and system modelled, into several
different types. Simulation models can be classified as being static or dynamic,
deterministic or stochastic, and discrete or continuous. A static simulation model represents
a system at a particular point in time, while dynamic simulation models represent systems
as they change over time.

Simulation models that contain no random variables are classified as deterministic.
Deterministic models have a known set of inputs, which will result in a unique set of
outputs. On the other hand, a stochastic model has one or more random variables as inputs,
which result in random outputs.

A system can be classified as discrete or continuous, according to the way its state
variables change. The state of a system is defined to be the collection of variables necessary
to describe the system at any time, relative to the objectives of the study. When the state
variables change only at a discrete set of points in time, the system is classified as discrete.
Conversely, in a continuous system, the state variables change continuously over time. In
practice, very few systems are strictly discrete or strictly continuous, but since one type
predominates for most systems, it is usually acceptable to classify a system as either being
discrete or continuous [28].

In the case of discrete-event simulation, the model is analysed by numerical rather than
by analytical methods. Analytical methods employ the deductive reasoning of mathematics
to solve the model. Numerical methods employ computational procedures to solve
analytical models. In the case of simulation models, which employ numerical methods,
models are executed rather than solved. That is, an artificial history of the system is
generated based on the model assumptions, and observations are collected to be analysed
and to estimate the true system performance measures.

 17

Chapter 3. Technological Context: Simulation Software.

Predominantly, computer systems and communication networks are described by state
variables that change discretely, justifying the choice for developing discrete-event
simulation models.

The considerable amount of established techniques for its development and analysis and
the large number of software packages readily available for this type of simulation, are just
some of the additional characteristics that further corroborate this option. Some simulation
tools will be overviewed throughout this chapter.

Generally, the implementation of discrete-event simulation models encompasses a
number of common features such as:

• generation of random numbers;

• advancing simulated time;

• maintaining a list of events;

• determining the next event from the list;

• passing control to the appropriate block of code;

• collecting output data;

• detecting error conditions.

These features are, in reality, so common in the implementation of discrete-event
simulation models that they have led to the emergence of special-purpose simulation
software tools that provide these common facilities for the implementation of simulation
models. These software tools can be generally classified in two distinct categories:
simulation languages and simulation packages. The latter can be divided in application-
oriented and general-purpose simulation packages.

A deeper debate of this matter shall not be attended. As this dissertation is focusing on
the simulation of a communication network, a discussion of application-oriented simulation
packages for this purpose will suffice.

3.2 Simulation Languages
Simulation languages provide maximum flexibility for the simulation developer who

wants to construct simulators by means of programming. Because most simulation
languages have expressive power equivalent to a general-purpose programming language,
the simulation developer has great flexibility in designing and implementing the simulator.
The trade-off for this flexibility is the development effort required to program the
simulator.

Much work has been done at the simulation language level, either in the form of true
languages or as function libraries. Some examples of freely available simulation languages
in use today are briefly addressed below.

PARSEC (PARallel Simulation Environment for Complex systems) [29] is a C-based
simulation language developed by the Parallel Computing Laboratory from the University

18

Chapter 3. Technological Context: Simulation Software.

of California, Los Angeles, for sequential and parallel execution of discrete-event
simulation models. It is available in binary form only for academic institutions.

SMURPH (System for Modelling Unslotted Real-time PHenomena) [30] is intended for
simulating communication protocols at the medium access control (MAC) level. SMURPH
can be viewed as a combination of a protocol specification language based on C++ and an
event-driven, discrete-time simulator that provides a virtual and controlled environment for
protocol execution. SMURPH can be used for designing low-level communication
protocols and for investigating their quantitative and qualitative properties.

SIMSCRIPT [31] is a simulation language with both declarative and procedural
features, designed for discrete-event and hybrid discrete/continuous modelling. It has been
in continuous use and development since its invention in 1962. The syntax and semantics of
SIMSCRIPT II are designed to make simulation programs easy to write and understand.
The language syntax is “English-like” and fairly high-level. Today, SIMSCRIPT II.5 is
more than a simulation language, being a commercial product offered by CACI Products
Company. An important contribution from SIMSCRIPT is its considerable impact on the
development of SIMULA (SIMUlation LAnguage), through its list processing, time
scheduling mechanisms, random drawing and other utility routines.

The SIMULA [32] programming language was designed and built at the Norwegian
Computing Centre (NCC) in Oslo between 1962 and 1967. It was originally designed and
implemented as a language for discrete event simulation, but was later expended and re-
implemented as a full scale general purpose programming language. Although SIMULA
never became widely used, the language has been highly influential on modern
programming methodology.

CSIM/C++SIM [33] is a programming tool for simulation of discrete processes. It is an
extension of the C language obtained by including SIMULA-like possibilities by means of
C macros and functions. CSim uses a special C-functions and C-macros library. The typical
application area of CSim is functional validation of distributed, parallel and fault-tolerant
systems and programs. Similarly, C++SIM is a collection of C++ libraries.

3.3 Network Simulation Packages
Network simulation packages provide a more comprehensive support than simulation

languages. They include the basic constructs for the development of network simulation,
typically require less programming effort and have a smoother learning curve, when
compared to simulation languages. Many network simulation packages include some type
of pre-built and reusable models of networking protocols, devices and applications.
Additionally, they also provide means for using and creating user interfaces to the
simulation models, facilitating their development, debugging and understanding.

There exist several examples of such simulation packages. Some characterisation to a
number of these is provided next.

OPNET [34] is widely held as the state-of-art in network simulation. It is a suite of
products that combines predictive modelling and a comprehensive understanding of
networking technologies to enable design, deployment, and management of network
infrastructures, network equipments, and networked applications. In particular, OPNET

 19

Chapter 3. Technological Context: Simulation Software.

Modeller is a development environment, allowing to design and study communication
networks, devices, protocols, and applications. OPNET is a commercial product, although it
provides some academic licensing programmes, albeit with some restrictions.

NetSim [35] is intended to offer a very detailed simulation of Ethernet, including
realistic modelling of signal propagation, the effect of the relative positions of stations on
events on the network, the collision detection and handling process and the transmission
deferral mechanism. However, its development has stagnated and it is infeasible its
extension in order to address modern networks.

CNET [36] is a discrete-event network simulator enabling experimentation with various
data-link layer, network layer, routing and transport layer networking protocols. It has been
specifically developed for, and used in, undergraduate computer networking courses taken
by thousands of students worldwide.

Ns-2 (Network Simulator 2) [37] is a discrete event simulator targeted at networking
research. Ns-2 provides substantial support for simulation of TCP, routing, and multicast
protocols over wired and wireless (local and satellite) networks. Ns began as a variant of
the REAL [38] network simulator in 1989, and has evolved substantially over the past few
years. The full source code of ns-2 can be downloaded and it can be compiled in multiple
platforms, including the most popular UNIX flavours and Windows.

OMNeT++ (Objective Modular Network Testbed in C++) [39], is a public-source,
object-oriented modular discrete event simulation package that can be used for modelling
communication protocols, computer networks, traffic modelling, multiprocessors and
distributed systems. OMNeT++ also supports animation and interactive execution.

The previous list is not, by any means, comprehensive. It presents the several options
considered for the development of the work presented in this dissertation. Among the
simulation packages described, only ns-2 and OMNeT++ were assessed has possible
solutions for the use in the work described by this dissertation. While ns-2 is a network
simulation classic, it has many drawbacks, when compared with OMNeT++, which is a
more modern and structured simulation package. The following summarises a number of
advantages from OMNeT++ over ns-2.

• the OMNeT++ simulation kernel is a class library: the components are developed
as any other class library, and then linked with the executable library. There is no
need to modify OMNeT++ sources anywhere. In contrast, ns-2 tends to be a bit
monolithic: to add implementations to it, it is necessary to download the full source
and modify it in several places;

• OMNeT++ follows a modular approach: the model is assembled from self-
contained building blocks. These components are reusable “as is” in other
simulations;

• ns-2 has some considerably detailed built-in concepts about nodes, agents,
protocols, links, packet representation, network addresses, etc. This often increases
the difficulty in developing models that include even slightly different concepts.
OMNeT++ is completely flexible and generic: it is possible to simulate anything
that can be mapped to active components that communicate by passing messages;

20

Chapter 3. Technological Context: Simulation Software.

• in OMNeT++, it is possible to fight model complexity by using hierarchical design:
any complex component can be implemented as one unit or built out of several
smaller components. In ns-2, models are “flat”:

• OMNeT++ has a powerful interactive graphical environment, where it is possible to
examine nearly everything during execution. Ns-2 only includes Network
AniMator (NAM), which is little more than a playback tool.

3.4 A Few More Details on OMNeT++
OMNeT++ is a discrete event simulation package written in C++ with a primary

application area in the simulation of computer networks and other distributed systems. The
OMNeT++ simulation models are composed of hierarchically nested modules that
communicate with message passing. Modules at the lowest level are programmed using
C++, while the model structure is defined by a topology description language. Using this
topology description language, modules can be combined and reused flexibly.

The package contains the C++ simulation kernel library, a manual, a simulation kernel
API reference, a graphical topology editor, a graphical runtime environment with
interesting animation and tracing capabilities, as well as a command-line runtime
environment for batch execution. It also includes several other tools and sample
simulations.

One of the strengths of OMNeT++ is that one can execute the simulation under a
graphical user interface with interesting features. The GUI makes the internals of a
simulation model fully visible to the person running the simulation: it displays the network
graphics, animates the message flow and lets the user peek into objects and variables within
the model. The use of the tracing/debugging capabilities does not require extra code to be
written by the simulation programmer.

OMNeT++ already contains detailed IP, TCP, and FDDI protocol models and several
other simulation models (file system simulator, Ethernet, a framework for simulation of
mobility, etc.). However, the simulation model suite for OMNeT++ has not crystallised yet
and many of these models are still under development.

OMNeT++ is open source, free for non-profit usage, and has an active user community.
It has been tested on Linux, Solaris, Windows and Mac OSX. The Web site [40] provides
source code, binaries, documentation, mailing lists, a Web-based discussion forum and
information on workshops. OMNeT++ modelling concepts will be briefly described now.

An OMNeT++ model is composed of hierarchically nested modules which
communicate with messages. The top level module is the system module (often called
network). The system module contains sub-modules. These sub-modules may be of two
different types: compound modules and simple modules. Modules that can contain sub-
modules are termed compound modules. These may contain an unlimited nesting of sub-
modules. Conversely, modules that do not contain any sub-modules are called simple
modules and are at the lowest level of the module hierarchy (Figure 9).

 21

Chapter 3. Technological Context: Simulation Software.

System Module

Compound Module
Simple
Module

Simple
Module

Simple
Module

Figure 9. OMNeT++ module hierarchy

Simple OMNeT++ modules contain the algorithms of the models. These are
implemented as C++ classes derived from a simple module base class, by redefining the
virtual function that contains the algorithm. The full flexibility and power of the
programming language can be used, supported by the OMNeT++ simulation class library.

Modules communicate by exchanging messages. In a simulation, messages can
represent frames or packets in a communication network, jobs or customers in a queuing
network, or other types of mobiles entities. OMNeT++ class library includes a message
base class. This class can be extended to arbitrarily represent any type of mobile entity
needed for the simulation model.

Simple modules can send messages either directly to their destination or along a
predefined path, through gates and connections. Gates are the input and output interfaces of
modules. Messages are sent out to output gates and received through input gates. Each
connection is created within a single level of the module hierarchy. In a compound module
one can connect the corresponding gates of two sub-modules, or a gate of one sub-module
and a gate of the compound module (Figure 10). Due to the hierarchical structure of the
model, messages typically travel through a series of connections, to start and arrive in
simple modules.

 Compound Module

Simple
Module

Simple
Module

Compound Module

Simple
Module

Simple
Module

Gates
Connections

Figure 10. OMNeT++ gates and connections

To help modelling transmission channels and packet transmissions, connections can be
assigned three parameters: propagation delay, bit error rate and data rate. All these three
are optional. One may specify link parameters individually for each connection, or define
link types and use them throughout the whole model. For example, by defining the data rate
of a connection, it is possible to model the transmission time of a packet by using the size
attribute from the message class that represents the packet.

The structure of the modules (both simple and compound) is defined using NEtwork
Description (NED). The NED language supports the definition of the network’s topology in
a modular fashion. A network description consists of a number of component descriptions
(channels, simple/compound module types). The channels, simple modules and compound

22

Chapter 3. Technological Context: Simulation Software.

modules of one network description can be reused in another network description. As a
consequence, the NED language allows users to build their own module libraries.

All modules can have parameters that can be used to parameterise the module topology,
customise simple module behaviour, or for module communication. Parameters can be
numeric values, expressions using other parameters, calling of C functions, random
variables from different distributions, and values input interactively by the user.

3.5 Summary
Simulation may present itself as an appealing option for analysing the timing properties

of EIP-based distributed systems. This chapter introduced some basic concepts and options
on simulation software. The progress of the chapter sustained the choice for the OMNeT++
simulation package, to which some further details were provided.

 23

C h a p t e r 4

APPROACHES FOR TIMELINESS ANALYSIS
4 Approaches for Timeliness Analysis

4.1 Introduction
In this chapter, basic concepts of real-time systems are laid out to introduce the

foundations of traditional real-time response time analysis, some of which may also be
applicable to the analysis of distributed systems. The next two sections addresses concepts
firstly associated with single processor systems, which are then adapted and extended to be
applied in the analysis of distributed systems.

In this chapter some aspects related to the application of simulation-based approaches to
perform timeliness analysis will be also covered. An essential component of a simulation-
based analysis is the development of accurate simulation models and the adequate
exploration of the produced output data. In section 4.4, both of these issues are addressed.

4.2 Basic Concepts of Real-time Systems
Real-time computing systems are defined as those systems in which the correctness of

the system depends not only on the logical result of computation, but also on the time at
which the results are produced [41]. There are various examples of real-time computing
systems, such as command and control systems, flight control systems or robotics.

A typical real-time computing system has a real-time program running on the system,
which reads inputs from input devices, processes these inputs, and often produces outputs
to be sent to output devices. The time between the arrival of an input from a device and the
completion of the processing for that input is called the response time for the device [42].
The relative deadline for the device can be defined as the maximum admissible interval
between the instant of the input arrival and the completion of the processing for that input.
Hence, the response time for a device must be smaller or equal to its relative deadline.

Assume that each input device is assigned a task (process) of the application program
and that the tasks share a same processor. The problem of determining whether the system
will meet its peak processing load, or in other words, whether no input from any device will
be lost, becomes one of schedulability analysis of tasks [43].

A round-robin scheduling policy ensures that each task gets a share of the processor.
However, such an approach may not be suitable for real-time systems. Assume the
following example [44]: “Consider a computer controlling an aircraft. Among its tasks are
maintaining stability and keeping the cabin temperature within acceptable limits. Suppose
the aircraft encounters turbulence that makes it momentarily unstable. The computer is then
supposed to adjust the control surfaces to regain stability. If we use round-robin scheduling

 25

Chapter 4. Approaches for Timeliness Analysis.

for this application, the computer may switch context partway through making the control
adjustments in order to spend time making sure the cabin temperature is just right. The
result may well be a crash, and the fact that the cabin is being maintained at optimum
temperature will be scant consolation to the passengers as the airliner falls out the sky.
What we want is to give the stability-maintenance task a very high priority, which ensures
that when stability is threatened, all other interfering tasks are elbowed out of the way to
allow this all-important task enough computer cycles.”

It follows that the consideration of priority levels is crucial to a real-time computing
system. If different inputs have different response time requirements, we need to consider
different priority levels to schedule the related processing tasks. Consider a real-time
system, within which several devices are connected at different priority levels to a single
processor computer system. An input being processed will be preempted when another
input of higher priority arrives, and will only be resumed when there is no processing
remaining at higher priorities.

Assume that the input from a device is saved in a buffer, until it is overwritten by the
next input of the same device. The problem is to determine whether for a given assignment
of priority levels, the system will meet its peak processing load (i.e. no input from any
device will be lost). A more basic problem is how to assign devices to priorities in order to
meet the system-processing load.

4.2.1 Characterisation of Tasks
There is a number of attributes related to a task in a real-time system, typically

including the following:

• C, the worst-case execution time (WCET) of the task;

• T, for periodic tasks it is the minimum time between arrivals of instances of the
same task;

• D, the relative deadline of the task, i.e., the maximum time allowed between the
release of the task and completion of its execution;

• P, priority level assigned to the task;

• B, longest time a task may be blocked by a lower priority task;

• R, worst-case response time of a task (most schedulability analyses try to verify if
R < D).

To illustrate these attributes, consider a task (Γ1) that is released periodically (every 9
time units) to perform some kind of processing. The worst-case execution time (C) of the
task is 3 time units, and its relative deadline (D) is 6. Several instances (Γ1,1 , Γ1,2 ,…, Γ1,n)
of task Γ1 are depicted in Figure 11.

26

 Chapter 4. Approaches for Timeliness Analysis.

 27

T

0 3 6 9 12

Γ1,2

time

Γ1

C
D

Task instance Activation of the task Γ1,n Relative Deadline

Γ1,1 Γ1,3

15 18

Figure 11. Illustration of task attributes

Tasks can also be characterised according to their predictability. This characteristic of
the tasks affects their schedulability analysis. Concerning the predictability, three basic
types of tasks can be defined: periodic, aperiodic and sporadic.

Periodic tasks, as their name implies, are released on a regular basis. They are
characterised by their period, their deadline and their required execution time per period.
The deadline is often assumed to be equal to the period, i.e. the processing of an input must
be completed, at most, before the next input from the same device.

Aperiodic tasks are released only occasionally, and are usually triggered by an external
event. To allow worst-case calculations to be made, a minimum period between any two
aperiodic inputs (from the same device) is often defined. If this is the case, the task
involved is said to be sporadic, and its period corresponds to its minimum inter-arrival time.

Tasks can also be characterised according to their criticality, depending on the
consequences of not being executed before their deadlines. Concerning their criticality real-
time tasks can be soft, hard or safety-critical.

Real-time tasks are said to be soft is meeting its deadline is desirables for performance
reasons, but missing a deadline does not cause serious damage and does not jeopardise the
correct system behaviour. Conversly, hard real-time tasks are those whose timely execution
is critical. If deadlines are missed, severe faults may occur in the system. If the fault is
catastrophic, the task is said to be a safety-critical real-time task.

4.2.2 Scheduling Tasks in Real-time Systems
Scheduling involves the allocation of time (and resources) to tasks, in such a way that

timing requirements (or other performance requirements) are met. Scheduling has been
perhaps the most widely research topic within real-time systems. As a consequence, there
are multiple taxonomies for the scheduling schemes and for the methodologies for the
schedulability analysis.

In a single processor computing system, a set of tasks shares a common resource: the
processor. Schedulability analysis has to be performed to predict whether the tasks will
meet their timing constraints.

The schedulability analysis can be performed online or offline. In the first case, the
schedulability of the task set is analysed at run-time, whereas in the latter it is performed
prior to run-time (pre-run-time schedulability analysis).

Chapter 4. Approaches for Timeliness Analysis.

The offline scheduling has several advantages over the online scheduling: it requires
little run time overhead and the schedulability of the task set is guaranteed before
execution. However, it requires a prior knowledge of the tasks’ characteristics, which
fortunately is possible in most of real-time systems. If the tasks’ characteristics are not
known prior to run time, schedulability analysis must be performed online.

The most used type of offline scheduling is the priority-based approach, where no
explicit schedule is constructed. At run-time, tasks are executed in a highest-priority-first
basis. Priority-based approaches are much more flexible and accommodating than other
approaches.

4.2.3 Priority Assignment Schemes
One of the most used priority assignment schemes is to give the tasks a priority level

based on its period: the smaller the period (T), the higher the priority (P); that is, Ti < Tj ⇒
Pi > Pj. This assignment is intuitively explained by the fact that more critical devices will
provide inputs more frequently (via asynchronous interrupts), or will be polled more
frequently. Thus, if they have smaller periods, their worst-case response time must also be
smaller. This type of priority assignment is known as the rate monotonic (RM) assignment,
and the related pre-run-time schedulability analysis was firstly introduced in [45].

If some of the tasks are sporadic, it may not be reasonable to consider the relative
deadline equal to the period. A different priority assignment can then be to give the tasks a
priority level based on its relative deadline: the smaller the relative deadline (D), the higher
the priority; that is, Di < Dj ⇒ Pi > Pj. This type of priority assignment is known as the
deadline monotonic (DM) assignment [46].

Both RM and DM priority assignments belong to the group of fixed priority scheduling
(FPS) mechanisms, in the sense that priorities do not vary along time. At run-time, tasks are
dispatched highest-priority-first. A similar dispatching policy can be used if the task, which
is chosen to run, is the one with the earliest deadline. This also corresponds to a priority-
driven scheduling, where the priorities of the tasks vary along time. Thus, the earliest
deadline first (EDF) is a dynamic priority assignment scheme. Pre-run-time schedulability
analysis for tasks dispatched according to the EDF assignment scheme was also introduced
in [45].

In all three cases, the dispatching phase will take place either when a new task is
released or the execution of the running task ends.

In a priority-based scheduler, a higher-priority task may be released during the
execution of a lower-priority one. If the tasks are being executed in a preemptive context,
the higher-priority task will preempt the lower-priority one. Contrarily, in a non preemptive
context, the lower-priority task will be allowed to complete its execution before the higher-
priority task starts execution. This situation can be described as a priority inversion due to
non preemption (a higher-priority task is delayed by a lower-priority one). This is also
known as blocking.

To illustrate, both RM and EDF scheduling, consider the following task set:

28

 Chapter 4. Approaches for Timeliness Analysis.

 29

Table 1. Example task set

Task C (ms) T=D (ms)
1 1 5
2 5 12
3 4 14

Figure 12 illustrates a time-line of the schedule for this task set, assuming that all of
them share a common initial release time (at time instant 0), and the tasks are preemptable.

Rate-Monotonic (RM) Schedule

Task 1

Task 2

Task 3

0 10 20

Earliest-Deadline-First (EDF) Schedule

time (ms) 30

10 20 time (ms) 30

Task 1

Task 2

Task 3

0
Figure 12. RM and EDF schedule examples on 1 Processor

4.3 Analytical-Based Timing Analysis
Real-time computing systems with tasks dispatched according to a priority-based policy

(only RM and DM will be considered) must be tested a-priori in order to check if, during
run time, no deadline will be lost. This feasibility test is called the pre-run-time
schedulability analysis of the task set.

It can be shown that for periodic tasks, a set of tasks is schedulable if and only if there is
a feasible schedule for the LCM (least common multiple) of the periods [47]. Moreover, it
can also be shown that if the tasks share a common request time (known as the critical
instant), it is a pre-run-time schedulability sufficient condition that the tasks are schedulable
for the longest of the periods [45]. This suggests that a time-line could be used to perform
the schedulability analysis. For instance, and concerning the example shown in the previous
section, where the longest period is 14, Figure 12 shows that the schedule generated by both
RM and EDF schemes are feasible for the task set (if all the tasks share a common initial

Chapter 4. Approaches for Timeliness Analysis.

release time). However, time-line approaches may not be effective for systems with a large
number of tasks. Hence, analytical methods are preferable.

There are mainly two types of analytical methods to perform pre-run-time
schedulability analysis. One is based on the analysis of the processor utilisation. The other
is based on the response time analysis for each individual task. In [45], the authors
demonstrated that by considering only the processor utilisation of the task set, a test for the
pre-run-time schedulability analysis could be obtained. Contrarily, a response time test
must be performed in two stages. First, an analytical approach is used to predict the worst-
case response time of each task. The values obtained are then compared, trivially, with the
relative deadlines of the tasks.

The utilisation-based tests have a major advantage: it is a simple computation
procedure, which is applied to the overall task set. By this reason, they are very useful for
implementing schedulers that check the feasibility online. However, utilisation-based tests
have also important drawbacks, when compared with their response-time counterparts.
They do not give any indication of the actual response times of the tasks. More importantly,
and apart from particular task sets, they constitute sufficient but not necessary conditions.
This means that if the task set passes the test, the schedule will meet all deadlines, but if it
fails the test, the schedule may or may not fail at run-time (hence, there is a certain level of
pessimism). It is also worth mentioning that the utilisation-based tests cannot be used for
more complicated task models [48].

In the next sub-sections, the most relevant feasibility tests for task sets scheduled with
fixed priority schemes for both preemptive and non preemptive contexts will be surveyed.
Depending whether the tests are applied to the overall task set or individually to each task,
they are classified as utilisation-based tests or response time tests, respectively.

4.3.1 Utilisation-Based Tests
For the RM priority assignment, Liu and Layland [45] introduced a utilisation-based

pre-run-time schedulability test, which, when satisfied, guarantees that tasks will always be
completely executed before their deadlines:

()121

1
−×≤∑

=

N
N

i i

i N
T
C

 (1)

with N being the number of tasks in the system.

This utilisation-based test is valid for periodic independent tasks, with relative deadlines
equal to the period, and for preemptive systems. As mentioned in the previous section,
typically the utilisation-based tests are sufficient but not necessary conditions. For instance,
for the task set shown in Table 1, the test fails (from Equation (1), 0.90 < 0.78 is false), but
the task set is schedulable, as can be seen by the time-line of Figure 12.

Formulations for the utilisation-based tests with deadlines smaller than periods are not
available, to our best knowledge. It is however possible to formulate a simple utilisation-
based test for the case of non preemptive tasks.

In [49], the authors update the basic utilisation based test (1) to include blocking
periods, during which higher-priority tasks are blocked by lower-priority ones, to solve the

30

 Chapter 4. Approaches for Timeliness Analysis.

 31

problem of non-independence of tasks (for instance tasks that share resources which are
protected by mutual exclusion):

() Nii
i

i

i
i

i i

i i
T
B

T
C

≤≤
=

∀−×≤+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ 1 ,

1

1

 ,12 (2)

where Bi is the maximum blocking a task i may suffer [49]. Equation (2) assumes that Pi+1
≤ Pi, ∀i<N; that is, tasks are ordered by decreasing priority.

In a non preemptive context, a higher-priority task can also be “blocked” by a
lower-priority task. Assuming that the tasks are completely independent, the maximum
blocking time a task may suffer is given by:

{ }

()
{ } { }⎪⎩

⎪
⎨
⎧

≠=

==

=∈

=

jNjijilpji

jNjii

PPCB

PPB

,..,1

,..,1

min if ,max

min if ,0
 (3)

where lp(i) denotes the set of lower-priority tasks (than task i).

Therefore, Equation (2) can be used as an utilisation-based test for a set of non
preemptable but independent tasks, with the blocking for each task as given by Equation
(3).

4.3.2 Response Time Tests
In [42] the authors proved that the worst-case response time Ri of a task i is found when

all tasks are synchronously released at their maximum rate. This is known as the critical
instant. In such case, Ri is defined as:

iii CIR += (4)

where Ii is the maximum interference that task i can experience from higher-priority tasks
in any interval [t, t + Ri]. The maximum interference (Ii) occurs when all higher-priority
tasks are released synchronously with task i (the critical instant). Without loss of generality,
it can be assumed that all processes are released at time instant 0.

Consider a task j with higher-priority than task i. Within the interval [0, Ri], it will be
released ⎡Ri/Tj⎤

1 times.

Therefore, each release of task j will impose an interference of Cj. Hence, the overall
interference is given by:

1 The ceiling function ⎡x⎤ returns the smallest integer greater than or equal to x. Similarly, the floor function ⎣x⎦ is

used to denote the larger integer smaller than or equal to x.

Chapter 4. Approaches for Timeliness Analysis.

()
∑
∈ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
×
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=

ihpj
j

j

i
i C

T
R

I (5)

where hp(i) denotes the set of higher-priority tasks (than task i). Substituting this value back
in Equation (4), the worst-case response time Ri of a task τi is given by:

()
i

ihpj
j

j

i
i CC

T
RR +

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
×
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
= ∑

∈

 (6)

Equation (6) embodies a mutual dependence, since Ri appears in both sides of the
equation. In fact, all the analysis underlay this mutual dependence, since in order to
evaluate Ri, Ii must be found, and vice-versa. To solve such equation, a recurrence
relationship must be formed [50]:

()
i

ihpj
j

j

m
im

i CC
T

WW +
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
×
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
= ∑

∈

+1 (7)

The recursion ends when Wi
m+1 = Wi

m = Ri, and can be solved by successive iterations
starting from Wi

0 = Ci. Indeed, it is easy to show that Wi
m is non-decreasing. Consequently,

the series either converges or exceeds Ti (in the case of RM) or Di (in the case of DM). If
the series exceeds Ti (or Di), the task Γi is not schedulable.

In [50] the authors updated the analysis by Joseph and Pandya to include blocking
factors introduced by periods of non preemption, due to the non-independence of the tasks.
The worst-case response time is then updated to:

()
i

ihpj
j

j

i
ii CC

T
RBR +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
×
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+= ∑

∈

 (8)

which can also be solved using a similar recurrence relationship. Bi is also as given by
Equation (3).

Some care must be taken using Equation (8) for the evaluation of the worst-case
response time of non preemptable independent tasks. In the case of preemptable tasks, with
Equation (6) we are finding the processor's level-i busy period preceding the completion of
task i; that is, the time during which task i and all other tasks with a priority level higher
than the priority level of task i still have processing remaining. For the case of non
preemptive tasks, there is a slight difference, since for the evaluation of the processor's
level-i busy period we cannot include task i itself; that is, we must seek the time instant
preceding the execution start time of task i.

Therefore, Equation (4) can be used to evaluate the task's response time of a task set in a
non preemptable context and independent tasks, where the interference must be now re-
defined:

32

 Chapter 4. Approaches for Timeliness Analysis.

 33

()
∑
∈ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
×
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

ihpj
j

j

i
ii C

T
I

BI (9)

4.3.3 From Task to Message Schedulability Analysis
Communication between processes on different machines in a distributed system

requires messages to be transmitted and received on the underlying communication sub-
system. In general, these messages will have to compete with each other to gain access to
the network medium.

In order for hard real-time processes to meet their deadlines (in general), the access to
the communication subsystem will be scheduled in a manner which is consistent with the
scheduling of processes on each processor. Although the communication link is just another
resource, there are some issues which distinguish the link scheduling problem from
processor scheduling that are summarised below. In fact, unlike a processor, which has a
single point of access, a communication channel has multiple points of access. While
preemptive algorithms are appropriate for scheduling processes on a single processor,
preemption during message transmission will mean that the entire message will need
retransmitting. Typically, message transmissions are considered non preemptive. In
addition to the deadlines imposed by the application processes, deadlines may also be
imposed by buffer availability.

Considering some analogies between, for example, task execution time and message
transmission time or task blocking time and message blocking time, it is possible to adapt
the tests available for the schedulability analysis of non preemptable tasks in single
processor systems to the message scheduling for some type of networks. Examples can be
found in [27, 51-55].

Holistic2 Approach
A reasonably large distributed real-time system may contain tens of processors and

several distinct communication channels. In these systems, one of the most challenging
problems consists in finding end-to-end timing characteristics. For each couple of
communicating tasks (in different processor units) there is an end-to-end timing constrain:
the maximum time available for producing a message at the sender side, transmitting the
message over the network and processing it at the receiver side.

2 Holistic, adj. relating to or concerned with wholes or with complete systems rather than with the analysis of,

treatment of, or dissection into parts; Holism, n. a theory that the universe and especially living nature is
correctly seen in terms of interacting wholes (as of living organisms) that are more than the mere sum of
elementary particles [From Merriam-Webster's Collegiate Dictionary]

Chapter 4. Approaches for Timeliness Analysis.

Task 1

Host Processor A

Communications
Stack A

Task 2

Task n

Task 1
Task 2

Task 3

Host Processor B

Communications
Stack B

Sensor

Communication Medium

Figure 13. End-to-End communication delay

Both the processor and the communication subsystems can be analysed so that the
worst-case timing behaviour is predictable. To depict the several delay components
typically involved in such analysis, consider the following example of a remote I/O reading,
illustrated in Figure 13: the end-to-end communication delay starts when the sending task is
released and starts competing with other running tasks on the sender-hosting computer. The
task may suspend as soon as the message request is passed to the communications stack
(). Then, the message request waits in a queue (assuming a simplified protocol stack)
until it gains access to the communication medium. This queuing delay depends on how the
queue is implemented (first-come-first-served queue, priority queue, etc.) and how the
MAC level behaves (). The message request is then transmitted. This time interval
depends on the data rate and length of the transmission unit and also depends on the
propagation delay (). (Note that if intermediate systems (e.g., switches) are used, the
propagation delay component is more complex).

The message indication is then queued in the remote communication stack (). The
receiving task processes the message indication, and performs the actual reading of the
required data. The response frame is produced and queued (). The message response will
suffer similar types of delays. A queuing delay (again assuming a simplified protocol stack)
in the remote transmitting queue (), a transmission delay (), a queuing delay in the local
receiving queue (), and finally the time for the local task to process the response ().

In terms of the response time analysis of communicating tasks, distribution brings the
need to include the end-to-end communication delays, as one of the components of the
overall task’s response time. This is a quite complex approach to real-time analysis, and it
involves the provision of methodologies for the evaluation of the worst-case messages’
response times in the communication network, which are then “embedded” with the
communicating task, operating system and communication stack models.

34

 Chapter 4. Approaches for Timeliness Analysis.

 35

It is possible to reduce the difficulty of a global distributed system analysis by means of
a very simple concept: attribute inheritance. The overall analysis can be decoupled in
several simpler analyses of smaller subsystems. Given their attributes, these subsystems can
be analysed by means of exact procedures that let us find the worst-case response times. By
suitably combining these values, we can find tight bound for end-to-end computations and
we can then compare them with the relative constrains, in order to establish the feasibility
of the whole system. This type of analysis is called holistic analysis and has been addressed
previously by several researchers [9, 10].

4.4 Simulation-Based Timing Analysis
Developing a simulation model that accurately portray the timing behaviour of a

distributed system, bears a number of issues that must be correctly handled. The steps
needed for a correct simulation model development are depicted in Figure 14.

Real System

Identify Distribution

-Select family
-Choose parameters

Available
Data?

Select distribution

-Triangular
-Uniform
-Beta

YesNo

System Modelling

No

Yes

Validated and Verified
Simulation Model

Implementation

-Choose platform
-PRNGs…

No

No

Yes

Yes

Goodness-
-of-fit?

Verification

Validation

Figure 14. Simulation Development

Chapter 4. Approaches for Timeliness Analysis.

The process begins with the development of a conceptual model, representative of the
abstractions and assumptions about the real system. Here, special care should be taken with
the level of detail introduced and the overall model complexity.

The next step is to properly characterise the simulation model’s inputs, usually achieved
by collecting data of the actual system. Using this data, the developer may choose an
appropriate probability distribution, representative of the input process and select the proper
distribution parameters. If it is not possible to collect system data, by using system expert
knowledge and other available information about the nature of the process, it is usually
possible to use one of the triangular, uniform or beta distributions to model the input
process.

After modelling the input process, proper goodness-of-fit evaluation of the chosen
distributions should be performed, either by simple observations of the modelled input
process and of the actual system, or by using statistical tests.

With a conceptual model built, the next step is to perform the implementation of the
model. It is advisable to use one of the many available simulation packages available, rather
than build a simulation from scratch. As pointed out in [56], special care should be taken
with the Pseudo-Random Number Generators (PRNGs) used, as some common
implementations have short generation cycles, for today’s computational resources.

The implementation of a simulation model should entail a verification step for backing
up the correctness of the implementation of the model. This is whether the implementation
reflects properly the details and assumptions included in the model.

The validation of the model basically consists of the corroboration of the input-output
transformations of the model. This may comprise comparing simple observations of the
system with the model, verification of assumptions, using existing theory and other relevant
results or using quantitative techniques (like distribution fitting, homogeneity tests or
sensitivity analysis) to validate the simulation model components. The validation of the
simulation model may also include the comparison of the results from the simulation model
with the results of an analytical model and investigate if the two are coherent.

Adhering to the steps described above do not guarantee a successful simulation
exploitation, but are indeed a good sequence of actions towards it.

4.4.1 Meaningful Results from Simulation Output Data
One important aspect of any simulation study is the careful analysis of the output data

results, which is often an overlooked aspect [56]. Since this dissertation will describe
simulation models that have one or more random variables as input, these are said to be
stochastic simulation models, and, by its nature, a stochastic simulation model will also
produce random outputs. Thus, simulation has to be regarded as a computer-based
statistical experiment, and to have any meaning, appropriate statistical techniques must be
employed to analyse the simulation experiments.

Moreover, the data resulting from a simulation cannot be directly analysed using
traditional statistical methods, since most of these apply to Independent and Identically
Distributed (IID) data. This is an important topic of concern for the remainder of this text.

36

 Chapter 4. Approaches for Timeliness Analysis.

 37

Let us consider a simple example of a waiting queue, with a random service time. The
waiting time experienced by the first user will always be zero. On the other hand, the
waiting time of the second user will depend on the departure of the first one, and so on. If
we are interested in studying the waiting time in the queue, it is easy to observe that the
distribution of these times is neither identically distributed nor independent.

A method commonly used to overcome this problem is to make observations from the
results of multiple and independent simulation runs (or simulation replicas). Typically this
is achieved by making multiple simulation runs with the same initial conditions and
parameters, but yet different seeds for the random numbers used to drive the simulation
through time. In this way, it is possible to obtain independent and identically distributed
variables. Hence, it is possible to make estimates for the variables of interest, such as the
average delay observed, the number of messages dropped, or the maximum response time,
just to roll a few examples.

Next, a brief survey of the typical formulations for obtaining an estimator for a mean
value, as well as its respective confidence interval will be presented. Another aspect of
concern is how to get confidence intervals with some specified precision. These are crucial
pieces of basic statistical reasoning used in the majority of the approaches for simulation
output data analysis.

4.4.2 Statistical Ground for the Analysis of Simulation Output Data
Suppose we would like to obtain an estimate for the mean of an output variable. By the

way of example, let us say it is the mean message delay in queue to access a
communication medium. For a matter of simplicity, consider that we would like to observe
this delay during a defined period, because the system is shutdown or restarted after that
period (e.g. the case of a system that is disconnected at the end of a working day) – a
terminating simulation.

One run of the simulation will produce one estimate for the mean message delay.
Noticeably, the value of just one sample of a random process has no significance by itself.
However, executing multiple runs of the simulation will provide a set of mean delay values,
characterised by some distribution. Moreover, it will be IID, as pointed out. The samples
mean (remember that, in this example, our samples are the set of mean delays observed for
each simulation replica) is a natural estimator of the (unknown) true mean message delay.

But, how reliable is this estimate?

If we would make another set of simulation replicas, the result would, most likely, be
different. Indeed, an estimate without an indication of its precision is of little value.

However, to come up with this type of conclusions, one would have to know something
about the distribution of the sample. There is a basic, but very useful and important concept
in statistics, called the central limit theorem. This theorem basically states that the sum and
the average of many random values present a distribution close to normal. Typically, a
normal approximation is sufficiently good if about 30 or more values are used in the sum
(or average) [57]. Then, well-known methods can be used to draw confidence intervals
from normal distributions.

Chapter 4. Approaches for Timeliness Analysis.

There is, however, an important aspect to point out. The standard procedures for
inference are developed for situations where the standard deviation for the entire population
is known. As usually the entire population is unknown, it is also need to estimate the
standard deviation from the available data, in which case, the statistic will not have a
normal distribution, but a t-distribution.

For the sake of completeness, let us now lay down some basic statistics, applied to the
estimation of the model true characteristics.

Suppose that X1, X2, … Xn are IID random variables with a mean µ (in our example, the
mean message delay in queue to access a communication medium) and a variance σ2. Our
primary objective is to estimate µ. The sample mean ()(nX), is an unbiased (point)
estimator of µ, and is defined by:

n

X
nX

n

i
i∑

== 1)(
(10)

That is, the expected value of)(nX is µ: [] µ=)(nXE . If we perform a very large number
of independent experiments, each resulting in a)(nX , their average will be µ.

While)(nX is the estimator of µ, in a similar way, the sample variance (S2(n)) is an
unbiased estimator of σ2:

[]
1

)(
)(1

2

2

−

−
=
∑
=

n

nXX
nS

n

i
i

(11)

As discussed, it is important to have an assessment of the estimation precision. The
usual way to do this is to construct a confidence interval. An approximate
100(1 - α)% confidence interval for µ is given by:

n
nStnX n

)()(
2

2/1,1 α−−± (12)

The estimate ()(nX , in our case) represents the guess for the value of interest. The
margin of error (terms after the ± sign) gives a measure on how accurate the estimation is,
based on the variability of the estimation.

The confidence level reflects the amount of confidence that, in the long run, this
approach will be able to approximate the true value of interest. As we increase the
confidence level, the confidence interval gets wider. It can be shown that to cut the length
of the confidence interval in half, four times more samples are required.

38

 Chapter 4. Approaches for Timeliness Analysis.

 39

4.4.3 Non-Terminating Simulations
So far, we have been concerned with a finite set of samples extracted from a terminating

simulation. Nevertheless, non-terminating simulations are an important class that must be
target of our attention. Indeed, often our systems of interest will not have a terminating
event, and we will probably be interested in analysing the system’s behaviour in the long
run.

There are several subtypes of non-terminating simulations. In this case, a subtype where
the outputs of the simulation model tend to stabilise; that is, the system reaches a steady
state will be considered. A measure of performance for such simulation is said to be a
steady-state parameter. We will then focus our attention on analysing non-terminating,
steady-state parameters and thus assuming that, as the amount of data becomes large,
distributions will converge to a common distribution in the steady-state.

The analysis of steady-state parameters raises a very important problem, which is how
to choose the simulation data that actually represents the steady-state. Mostly due to the
choice of starting conditions, the initial output data of the simulation is usually not very
representative of the steady-state behaviour. This period, affected by the initialisation bias,
is usually referred to as the warm-up period. Using data from this period for the estimation
of system’s steady-state parameters may yield deceptive results.

To circumvent the warm-up period problem, one may simply resort to very long runs,
such that the data from the initial phase has a negligible impact, or to start the simulation in
a state supposed to be close to the steady-state. Effectively, these methods have some
serious practical impairments, thus somewhat more elaborate methods are commonly used.
These methods typically ignore data from the warm-up period, utilising some techniques,
based on the assumption that the variance of the samples is substantially lower in the
steady-state than in the warm-up period, to detect when it ends.

The replication approach described earlier may still be used in the context of non-
terminating simulations. All what is necessary is to define how to extract the steady-state
means from each simulation replica (Xi used to compute the sample mean in Equation (10)).
Suppose that we make n simulation replicas, each of length m, where m is much larger than
l (the length of deleted data used to eliminate the impact from initial conditions). As a rule
of thumb, m-l should be at least 10 times the size of l. In the context of non-terminating
simulations, this method is commonly called replication/deletion.

Let Xi be IID variables given by the mean in each simulation replica i, from the set of
values collected between l and m (Yij):

nifor
lm

Y
X

m

lj
ij

i ,...2,11 =
−

=
∑

+=

(13)

Similarly to the terminating case, Equation (10) gives an approximately unbiased point
estimation for the steady-state mean µ, and a confidence interval may be obtained with
Equation (12).

Chapter 4. Approaches for Timeliness Analysis.

An informal description of the method may be as follows:

1. define the size of the initial phase l from test simulation runs;

2. perform n independent simulation replicas of length m (with m much larger than l);

3. for each simulation replica i, compute the mean of all observations after the initial
phase l;

4. apply usual point estimate and confidence intervals on the IID means obtained
(given by Equations (10), (11) and (12)).

As referred previously in Section 4.4.2, the confidence interval depends on the variance
of Xi, which will be unknown when the first n simulation replicas are performed. If we
make a fixed number of replications, the resulting confidence interval may be too wide for
our particular purpose. However, also as pointed out in Section 4.4.2, we can decrease the
length of the confidence interval by a factor of 2, by performing 4 times as many
replications.

There are other methods that apply some variations. Instead of achieving independence
trough multiple simulation runs, one can perform one long simulation run and try to obtain
independent observations from subsets of data. The method of batch means [58], similarly
to the replication/deletion, attempts to obtain independent observations, but, in this case, the
single simulation run is divided into batches, where a batch takes the role of a single
replica. It can be shown that, for a sufficiently large number of batches, the mean of the
several batches will be approximately IID normal.

One of the most relevant advantages of this method is that it only has to go through one
warm-up phase, on other hand, a major problem is on choosing the batch size m, or
equivalently, the number of batches k. A number of guidelines extracted from research
literature, and a general recommended strategy may be found in [58].

In the group of methods based on one long simulation, other methods may be
encountered [28]. These methods, such as the autoregressive method or spectral analysis,
try to use estimates of the autocorrelation structure of the underlying stochastic process to
obtain an estimate of the variance of the sample and then to construct a confidence interval.
For sake of simplicity, the reader is referred to the literature [28, 58] for further information
on other methods.

All the procedures described to this point are, usually, classified as fixed-sample
procedures, where the sample sizes taken (the whole simulation, in the case of
replication/deletion or the batch, in batch means) are of a fixed size. Generally, some
conclusions may be established for all of these fixed-sample procedures [28]:

• if the total sample size is chosen too small, the actual coverage may be lower than
the desired;

• the appropriate choice of the total sample size is extremely model dependent and
impossible to choose arbitrarily.

Evidently, no procedure that sets the run length before the simulation begins will always
produce a satisfactory confidence interval. A sequential scenario where the simulation’s
end is determined by a relative statistical error that is verified in consecutive checkpoints is

40

 Chapter 4. Approaches for Timeliness Analysis.

 41

a more interesting approach. Sequential methods are commonly based on the same methods
for non-terminating simulations as batch means or spectral analysis, in conjunction with
absolute or relative-error stopping rules. These procedures are more complex, requiring
computing the estimates at several points of the simulation to check if the stopping rule has
been satisfied, which can be computationally very expensive. Additionally, these
procedures may not be easily applicable when multiple measures of performance are
needed, and, because of random nature of simulation, the relative stopping rule can be
accidentally satisfied, resulting in premature termination of the simulation, and on wrong
estimation results.

Another typical problem with sequential procedures is that they are not very popular
among existent software packages. A simulation package supporting sequential procedures
is Akaroa2, designed at the University of Canterbury, New Zealand [56]. Besides the
problems described, sequential procedures are recognised as a practical approach allowing
control on the error of the final results of stochastic simulations [56].

4.4.4 Other Measures of Performance
All the previous methods seek to obtain a mean value for the output point estimator.

What about other kind of measures? Consider that we would like to estimate the probability
of a value belonging to an interval, for example, imagine the case of investigating the
probability that a queue length is greater than k messages. Another different performance
measure is a quantile. Quantiles describe the level of performance that can be delivered
with a given probability p. The next sub-section outlines some procedures to extract such
measures of performance like proportions, probabilities or quantiles.

Probabilities and Quantiles
Suppose we need to estimate the steady-state probability (p) of the mean message

delays in queue to access a communication medium being less than a value x. The variable
under analysis may be represented by 1 if the queue delay exceeds the value x, and 0
otherwise.

Making p = P(Y∈ B), where B is a set of real numbers smaller than x, and Y is the
original steady-state random variable, we are just in the presence of a special case of
estimating the mean, by letting the random variable Z be defined by:

⎩
⎨
⎧ ∈

=
otherwise

BYif
Z

,0
,1

 (14)

It can be shown that estimating p is equivalent to estimating the steady-state mean for
the expected value of Z (E(Z)).

A performance measure that does not fit in the same reasoning is a quantile. For
instance, if the variable represents the delay in queue that a client experiences, the 0.90-
quantile is the value x such that 90% of all messages experienced a delay shorter than x.

Estimating quantiles is both conceptually and computationally (in terms of number of
observations required) a more difficult problem than estimating the steady-state mean.
Additionally, most of the procedures for estimating these performance measures are based

Chapter 4. Approaches for Timeliness Analysis.

on order statistics and require storage and sorting of the observations. Nevertheless, the
general reasoning is similar to the one for obtaining the interval estimator for a steady-state
mean.

An example taken from [59] points-out one major problem with quantile estimation
describes that, for the steady-state estimation of 0.99 quantile of waiting times, an estimate
with relative a precision of 10% required about 500.000 observations, and a 0.999 quantile
needed a sampling size of approximately 2.300.000. Because quantile estimation require
storage and sorting of observed values, obtaining small quantile estimations, with a good
accuracy is often impractical. However, this is a problem under investigation, and several
techniques already exist that do not require storage and sorting have already been attained
and implemented. In [60], a number of such approaches are presented and evaluated.

4.5 Summary
The basis for the timeliness approaches addressed in this dissertation was presented in

this chapter. Basic concepts of real-time systems were laid out to introduce the foundations
of traditional real-time response time analysis applicable also to the analysis of distributed
systems. The first two sections addressed concepts associated with single processor
systems, which are then adapted and extended to be applied to the analysis of distributed
systems.

The second part of this chapter addressed issues related to the exploitation of a correct
simulation-based study. Both the proper development of simulation models and the grounds
for extracting performance measures from the produced output data were approached.

The concepts brought forward in this chapter will be the basis for the models to be
introduced in the subsequent chapter of this dissertation, for the analytical worst-case and
for simulation-based analysis in Chapter 5 and Chapter 6, respectively.

42

C h a p t e r 5

WORST-CASE BASED ANALYTICAL MODEL
5 Worst-Case Based Analytical Model

5.1 Introduction
An effort to formulate an analytical formulation to find end-to-end response times in

EIP based distributed systems is provided in this chapter. This model builds upon the
response time analysis presented in the previous chapter. Using the concept of attribute
inheritance, it considers a number of worst-case assumptions to derive the end-to-end
response time bounds.

While this is a very interesting and useful approach to start with, it basically leads to an
additive formulation built on top of several worst-case assumptions, thus potentially
exacerbating the levels of pessimism. This level of pessimism is easily foreseen in a
distributed system, where the probability of concurrence of independently generated worst-
case situations is realistically extremely low. Nevertheless, it is important to stress that the
decoupling of the diverse latency components brought by the producer/distributor/consumer
model underlying EIP corroborates the validity of tackling the problem in such a
guaranteed worst-case fashion.

5.2 End-to-End Latency Formulation
The decoupling of the diverse latency components brought by the

producer/distributor/consumer model underlying EIP makes possible to break down the
overall transaction, described in Section 2.3.5, into two independent transactions.
Considering the assumptions outlined in Section 2.3.6, the analytical formulation for
computing the worst-case end-to-end delay of a transaction can thus be defined as follows:

i
outputinputm

dnsw
m

sw
m

swsn
mii RLiLiLifdR τ++++= ∑

∈

→→

} ,{

)(

(15)

In brief, the delay associated to an end-to-end transaction results from the delay
components associated to two independent transactions (∑ term), added to the worst-case
controller task response time (Rτi) and the input filter (fdi).

In Equation (15) Lim
sn→sw denotes the worst-case time that a message m takes to arrive

from a source node sn to a switch sw. In the case m = input, sn is considered to be the node
that contains the input module related to the overall transaction i. In the case m = output,
then sn is considered to be the node that includes the controller responsible for processing
the output related to overall transaction i. Thus:

Chapter 5. Worst-Case Based Analytical Model.

44

⎪⎩

⎪
⎨
⎧

=+
=++

=→

 if ,
 if ,

outputmQeaQb
inputmQeaQbT

Li snsn

snsn
RPIinputiswsn

m
mm

mm (16)

where TiRPIinput denotes the time span corresponding to the periodicity defined for the
message m connection (input RPI) related to overall transaction i, Qbm

sn denotes the worst-
case delay caused by access contention in node sn backplane, and Qeam

sn denotes the worst-
case delay for message dispatching at the Ethernet adapter of node sn.

Similarly, Lim
sw→dn corresponds to the worst-case delay a message m may experience

from the switch sw to the destination node dn. In the case m = input, dn is considered to be
the node that contains the controller module related to the overall transaction i. In the case
m = output, dn is considered to be the node that includes the output module related to
overall transaction i. Therefore, it follows that:

⎪⎩

⎪
⎨
⎧

=++
=+

=→

outputmQeaQbT
inputmQeaQb

Li dndn
iRPIoutput

dndn
dnsw

m
mm

mm

 if ,
 if ,

 (17)

where TiRPIinput denotes the time span corresponding to the periodicity defined for the
message m connection (input RPI) related to overall transaction i.

In (15), Lim
sw denotes the worst-case relaying delay a message may experience at

Ethernet switch sw. This latency includes the time taken by the switch to relay message m
to the corresponding output port, and the queuing delay the message may suffer at the
output port. This latency will be reasoned out later on in a separate sub-section.

Finally, and before going through further details, a few words on the computation of
Rτi. Typical EIP controller modules support fixed priority scheduling. Therefore, it is
possible to obtain the worst-case response-time for the task associated to overall transaction
i (Rτi) by applying well-known response time analysis.

5.3 Latency Introduced by the EA (Qeam)
For the sake of simplicity, a rough characterisation is adopted for analysing the latency

introduced by the Ethernet Adapters (EA). Messages are assumed to be handled in an on-
demand fashion: as soon as a packet fully arrives at the network interface, a “packet
arrived” interrupt is raised on the host processor. The interrupt handler releases a task
which copies the data from the network buffer, performs the necessary delivery operations
to a task that, in turn, will encapsulate the data and transmit it to the remote Ethernet
address. Some delay components (Figure 15) are considered, such as the delivery delay of
the message (), the generation delay of the encapsulated message (), the possible
queuing to deliver it to the Ethernet network interface (), and, finally, a transmission and
a propagation delay (). The worst-case aggregating all these latencies will be denoted as
Dea; that is, the worst-case processing delay for any message being processed at the
particular Ethernet adapter of node ea. Note that ea will correspond to sn or dn, depending
on the formulations under consideration (Equations (16) or (17)).

 Chapter 5. Worst-Case Based Analytical Model.

 45

 Intermediate Task

Source Task Controller

Ethernet
Adapter

Backplane

Ethernet

Processor

Network Buffer

Figure 15. Controller: Message delay components

Therefore, a simple worst-case formulation of the delay introduced by the EA considers
that a particular message m will be processed only after all possible contending messages
(ncm

ea) are processed:

{ }dnsneaDncQea eaea
m

ea
m , with , ∈×= (18)

5.4 Latency Introduced by the Backplane (Qbm)
Figure 15 also illustrates other components contributing to the overall worst-case

latencies. The generation delay introduced by the task processing the related output object
to execute and generate the packet () (this corresponds to Rτi). The access delay, when
sending the message to the backplane of the Controller () (Qbm) and the propagation
delay in the backplane (). The latter will be, for now, neglected and some reasoning about
the second will now be exposed.

The Backplane access medium is based on a time division concept (TDMA-Time
Division Multiple Access). In this case, it divides the transmission time between each
connection producing data to the backplane. The access to the media is ordered by time,
such that each connection is assigned a time-slot in a cyclic schedule.

Connection 1 Connection 2 Connection 3
…

Connection 1

…

Time-slot

Connection 2

Communication cycle
Figure 16. Backplane Medium Access Control Scheme

Considering that the Backplane in each node nod is divided in fixed time-slots, with
duration tsnod, one for each connection producing data to the backplane. These time-slots
are assumed to be larger than the time needed to transmit the largest message transferred in
the node’s backplane, including overhead.

Considering the worst-case situation when a message arrives just a fraction of time after
its connection was served. In such case, the message must wait an entire communication
cycle, until it is transmitted. This can be effortlessly represented by:

Chapter 5. Worst-Case Based Analytical Model.

46

{ }dnsnntsncbQb nod
m

nod
m ,od with , ∈×= (19)

where the queuing time in the backplane is defined the number of connections producing
data to the backplane (ncbm), multiplied by the time taken to transmit each message (tsnod).

5.5 Latency Introduced by the Switch (Lisw)
In a preliminary analysis a switch that implements priorities will be contemplated, based

on classification of the Ethernet frames. All the traffic in the network is assumed to be
characterised, with well defined periodicities. It is also considered that, under a controlled
load the switch will introduce constant switching delay. If traffic is sent to an output port at
a higher rate than its capacity, packets must be queued. The following formulation may
give the worst-case queuing time in a switch:

∑
∈

+=
)(mcpj

jm
sw
m CsIsLi (20)

where, cp(m) is the set of messages from connections going out through the same switch
port as message m. Csj is the time to transmit a message j, including the inter-frame delay
(being j from the set of messages given by cp(m)). This also includes the time to transmit a
message m itself (Csm).

Ism will be the sum of the maximum blocking time a message may experience,
including the blocking by messages of equal priority, and the interference from higher
priority messages:

()

Dsl
T
Is

mneqDslIs
mhpj j

m
m ×

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
++×= ∑

∈

))(1((21)

This formulation considers a first-come-first-served policy between messages of
equal priority, to account with the possible aggregation of priorities due to the reduced
number of priorities supported in standard implementations. In Equation (21), neq(m) is the
number of messages with priority equal to m, and Dsl includes the latency introduced by
the switch to classify and relay the frame to an output port. More sophisticated formulations
have been tackled previously, which could be considered into this analysis [61, 62]. The
formulations used here are for the sake of simplicity.

 Chapter 5. Worst-Case Based Analytical Model.

 47

5.6 Numerical Example
For the purpose of instantiating the proposed formulation, a scenario with eight end-to-

end transactions in a 100Mbps Ethernet network was setup (Figure 17).

Remote IO 3 Remote IO 2 Remote IO 1

Controller 1

Ethernet Switch

EC

E I E O E O I

Transactions 1, 2, 3 Transactions 4, 5 Transactions 6, 7, 8

O

Figure 17. Example scenario

The Controller module has two tasks processing their input data. Task τ1, (Rτ1=2ms)
processes input data from connections 1, 2, 3, 4, 5, while τ2 (Rτ2=4ms) is processing the
input data from connections 6, 7, 8. Table 2 includes some parameters necessary for the
calculations. The worst-case latencies resulting from this scenario are given in Table 3.

Table 2. Assumptions for device parameters

Parameter Dea Dsl Interframe delay ts∀nod

Value (ms) 0.20 0.011 9.6E-04 0.05

Table 3. Transactions response time results

Input Output
Tr. RPI

(ms)
Size

(bytes) Lisn→sw

(ms)
Lisw

(ms)
Lisw→en

(ms)
Lisn→sw

(ms)
Lisw

(ms)
Lisw→en

(ms)

Ri
(ms)

1 5 48 6.50 0.05 4.00 9.00 0.05 1.25 22.85
2 7 46 8.50 0.06 4.00 11.00 0.06 1.25 26.87
3 10 50 11.50 0.07 4.00 14.00 0.07 1.25 32.90
4 25 48 26.25 0.08 4.00 29.00 0.07 1.25 62.65
5 30 48 31.25 0.09 4.00 34.00 0.08 1.25 72.67
6 45 55 46.50 0.11 4.00 49.00 0.08 1.25 104.94
7 75 46 76.50 0.12 4.00 79.00 0.09 1.25 164.96
8 150 60 151.5 0.13 4.00 154.00 0.10 1.25 314.98

Chapter 5. Worst-Case Based Analytical Model.

48

5.7 Summary
This chapter provided an effort to formulate a mathematical model enabling to find end-

to-end response times in Ethernet/IP based distributed systems. This model builds upon the
response time analysis presented earlier in Chapter 4, considering a number of worst-case
assumptions to derive the end-to-end response time bounds. The analytical formulations to
compute each of the delay components were presented along with an example scenario
where the overall approach is applied.

C h a p t e r 6

SIMULATION BASED TIMING
ANALYSIS OF EIP NETWORKS

6 Simulation Based Timing Analysis of EIP Networks

6.1 Introduction
An EIP simulation environment was developed using the OMNeT++ discrete-event

simulation platform. The simulation model developed from scratch for EIP is composed of
three basic components (nodes), mapping on the main EIP devices: a Remote IO, a
Controller and an Ethernet Switch, described earlier in Section 2.3.4. Each of these basic
nodes can be instantiated into several different device models, with different particular
characteristics, since modularity and parameterisation are considered into the design to a
sufficient extent. In the next subsections, further details are provided concerning the model
implementation.

6.2 The Remote IO Node
The Remote IO (RIO) is composed of several IO modules and an EIP Adapter, which

communicate through a backplane, using CIP packets. The IO modules contain the several
input/output connections of the device. Typically, each IO module will act as an Input or
Output module, but not as both at the same time. The Ethernet Adapter is responsible for
relaying messages between the Backplane and the Ethernet network. CIP packets are
eventually (for the case of a consumer outside the node) encapsulated into UDP packets
inside the EIP Adapter (ethIPAdapter in Figure 18).

Figure 18. EIP simulation model hierarchy in OMNeT++.

The Backplane is a simulation module that exists both at Controller and RIO nodes. For
simulation performance, at initialisation time the Backplane uses the information about the
data connections produced/consumed at each module to build a table with information on
the gates where to deliver each of the configured connections. Figure 19 provides a sample
of NED code defining the Backplane OMNeT++ simple module. A simple OMNeT++
module is declared with the keyword simple, followed by the module’s name. Included in

Chapter 6. Simulation Based Timing Analysis of EIP Networks.

50

the declaration are the OMNeT++ simple module’s parameters and gates. The gates of an
OMNeT++ module define the entry points of the module. For the example of the Backplane
module, an array of input and output gates are defined, where each pair of input and output
represents a Backplane interface connecting to a node’s module.

simple Backplane

 parameters:

 tTableTime : numeric,

 frameTime : numeric,

 timeDivison: bool;

 gates:

 in: in[];

 out: out[];

endsimple

Figure 19. Backplane NED definition.

The Backplane simple module has the parameter tTableTime, which defines the transmit
table time, used for the time division multiple access (TDMA) protocol used as backplane’s
MAC protocol. The parameter frameTime concerns the time a message takes to be
transmitted in the backplane, and the parameter timeDivision specifies whether the time
division protocol behaviour should be precisely simulated or simplified. The Backplane
module simulates the behaviour of a TDMA contention schema where access to the
communication medium is equally distributed to the several producing connections
delivering data to the backplane. Nevertheless, and because this simulation approach of the
backplane can introduce a great amount of events, it is possible to disable this behaviour.
The alternative will then be to insert a variable delay, as a function of the number of
connections that send messages to the backplane.

The EIP Adapter is responsible for relaying messages to/from the Ethernet network. It
receives the CIP messages from the Backplane and, in the CIP Bridge Layer
(cipBridgeLayer in Figure 18) encapsulates them into UDP packets which are passed down
to the Network Layer of the UDP/IP stack. In the opposite direction the packets are
retrieved from the UDP/IP packet and delivered to the Backplane.

The EIP Adapter encloses the delays introduced to perform the encapsulation of the
messages, to access the network and the delays resulting from the concurrent access to the
adapter resources. Figure 20 illustrates the NED definition of the Ethernet Adapter
OMNeT++ module (a compound module). Like an OMNeT++ simple module, a compound
module is composed of the module’s parameters and gates. Additionally, it has to include
its sub-modules and the connections between the sub-modules and gates.

Two parameters are used. The connectionIDProducedList and the
connectionIDConsumedList parameters are used for listing the CIP connection identifiers of
the connections produced and consumed in the node’s modules connected to the backplane.
The sub-modules of an EthIPAdapter module are the CIP Bridge Layer (cipBridgeLayer

 Chapter 6. Simulation Based Timing Analysis of EIP Networks.

sub-module) and Network Layer (networkLayers sub-module). The connections
implemented (refer to the NED code sample in Figure 20) are between these two layers and
the input/output gates from the backplane and the Ethernet network.

module EthIPAdapter

 parameters:

 connectionIDProducedList : string,

 connectionIDConsumedList : string;

 gates:

 in: from_backplane;

 out: to_backplane;

 in: from_eth;

 out: to_eth;

 submodules:

 cipBridgeLayer: CIPBridgeLayer;

 networkLayers: NetworkLayers;

 connections:

 from_backplane --> cipBridgeLayer.from_bp[0];

 to_backplane <-- cipBridgeLayer.to_bp[0];

 networkLayers.to_application --> cipBridgeLayer.from_ntw;

 networkLayers.from_application <-- cipBridgeLayer.to_ntw;

 from_eth --> networkLayers.from_phy;

 to_eth <-- networkLayers.to_phy;

endmodule

Figure 20. EthIPAdapter NED definition.

Each of the IO modules (labelled IOModule1, IOModule2, IOModule3, etc., in Figure
18) inside a node and connected to the Backplane contains a CIP Layer, responsible for
managing data transfers to/from the IO Connections. The IO Connection can behave either
as an output or input connection, and each IO Module may have several input or output
connections connected to its CIP Layer (Figure 21).

 51

Chapter 6. Simulation Based Timing Analysis of EIP Networks.

52

Figure 21. OMNeT++ EthIPIOModule composition.

When an IO Connection is doing the task of an input connection, it receives data from a
data input, which generates input data at a defined periodicity (this data input models the
input signals of an input connection). At a defined Requested Packet Interval (RPI), the IO
Connection constructs a CIP data item from the last received data, and sends it to the CIP
Layer. When an IO Connection is acting like an output connection, it receives data from the
CIP Layer, which is delivered to a data output, after a parameterised hardware delay. This
is illustrated in Figure 22, which provides the C++ code of the message handler from the
IOConnection class.

void IOConnection::handleMessage(cMessage *msg) {

 if (msg->isSelfMessage() == true && inputModule == true) {

 // at rpi, send input data and schedule next rpi

sendInputData();

if (((simtime_t)*rpi) > 0)

 scheduleAt(simTime()+((simtime_t)*rpi), msg);

} else {

 if (inputModule == true) { // acting as an input

 // discard previous dataItem and store new one

 if (dataItem != NULL) delete dataItem;

 dataItem = (CIPDataItem*) msg->dup();

 } else // acting as an output

 sendDelayed(msg->decapsulate(),((simtime_t)*asicDelay), "out");

 delete msg; // After finishing with a message, it is released

}

}

Figure 22. IOConnection class message handler C++ code.

The data input generators (dataInput1, dataInput2, ..., in Figure 22) impersonate the
signals applied at the input pins of the IO. They are parameterised by the length of the data
generated and the periodicity of the data generation, and by two delays introduced after the

 Chapter 6. Simulation Based Timing Analysis of EIP Networks.

generation of the input (a hardware delay and a filter delay). OMNeT++ supports defining
any of these parameters as a user-defined randomly distributed function. These parameters
can be either defined in the NED code of a compound module, in which case it will be the
same for all instances of this compound module, or defined in a special initialisation file
that may assign the parameters individually for each module in the simulation.

Figure 23 exemplifies the definition of the dataInput (NED code) parameters in an IO
module: a random variable with a uniform distribution in the interval [100, 150]
milliseconds (highlighted code line in Figures 23 and 24).

module EthIPIOModule

…

 submodules:

 dataInput: Input[numInputs];

 parameters:

 hwDelay = 200 us,

 dataLength = 22,

 filterDelay = 0 ms,

 period = uniform (0.1, 0.15);

…

endmodule

Figure 23. OMNeT++ EthIPIOModule NED code for parameter configuration.

Figure 24 illustrates the alternative setting of the same parameters through an
initialisation file, for a particular IO module instantiation (ioModule1), inside of a RIO node
(ethIPIO1), within a network (ethIPNetwork1).

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].hwDelay = 200 us

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].dataLength = 22

ethIPNetwork1.ethIPIO1.ioModule1.dataInput[0].filterDelay = 0 ms

ethIPIO1.ioModule1.dataInput[0].period = uniform(0.1,0.15)

Figure 24. EthIPIOModule parameter configuration through initialisation file.

6.3 The Controller Node
The Controller node is, in its structure, similar to the RIO node. The Backplane, the EIP

Adapter and IO modules are exactly the same modules as described previously for the
Remote IP node. Of course, it is possible to parameterise each of the modules differently,
and therefore manipulate their actual behaviour.

There is however a module that must be specified for the particular case of Controller
nodes: the Controller module (Figure 25). In an actual EIP system, the controller module is
responsible for executing the tasks performing the control functions.

 53

Chapter 6. Simulation Based Timing Analysis of EIP Networks.

54

Figure 25. OMNeT++ Controller module composition

The Controller was modelled reusing some OMNeT++ modules described earlier: the
IO Connection modules and the CIP Layer. The controllerInputConnection module
receives the data to be delivered to the ControllerTask module, corresponding to an output
connection at the remote source node. The output data generated by the controller task is
delivered to the controllerOutputConnection module. The ControllerTask (worst-case)
response time is a parameter which is a time span introduced between the reception and the
generation of data. This parameter can be defined has a random function that best models
the response time for each controller task.

6.4 The Switch Node
The Switch node models the delays introduced by an Ethernet Switching component.

For the purpose of this simulation, it is only necessary that the Switch recognises multicast
groups and deliver the frames received in an appropriate manner. The Switch model is
composed of several ports that connect to the nodes in the network. Because there is a port
in each direction, the Ethernet medium is assumed to be full-duplex.

The Switch node is a simple OMNeT++ module. The NED definition of the Switch
OMNeT++ module is rather simple, and is given in Figure 26. It is similar to the Backplane
OMNeT++ module, since it has an array of input and output gates, in which each pair
represents the interface with each connecting modules (the switch port).

simple Switch

 parameters:

 nodename : string,

 switchDelay : numeric;

 gates:

 in: in[];

 out: out[];

endsimple

Figure 26. Ethernet Switch NED definition.

 Chapter 6. Simulation Based Timing Analysis of EIP Networks.

OMNeT++ offers a rather convenient manner of defining channel transmission
characteristics. It is possible to define the characteristics of the connection between any two
modules by using a predefined channel. A channel is defined with its name, preceded by the
keyword channel. A channel may be assigned with the attributes delay, error and datarate.
The example code depicted in Figure 27 corresponds to the definition of a 100 Mbit/sec
Ethernet channel with a normally distributed delay, with mean value of 150 µs and a
standard deviation of 50 µs. The connecting channels model the transmission delays and
queue the messages whenever concurrent access to the medium occurs.

channel ethernet

 delay normal(0.00015,0.00005);

 datarate 100*10^6;

endchannel

Figure 27. Ethernet Channel definition in OMNeT++.

To simplify the multicast delivering process, the connection identifier of a producing
connection is directly mapped into the last octet of an IP Multicast Address. For example,
for a connection with the identifier 128, the IP Multicast Address would be constructed
with a user defined prefix and the last octet being 128; that is, for a prefix of 239.0.0., the
connection with identifier 128 would be mapped to the multicast group with address
239.0.0.128.

Because the rules defined by multicast Ethernet MAC address mapping are applied [63],
the Ethernet frames actually contain the connection identifier mapped into the multicast
groups. In this way, it is possible for the Switch to simply construct, at initialisation time, a
list of all producing/consuming connection IDs for each connected node. At run time, the
Switch module will merely compare the connection identifiers of the received frames with
the ones in the list for each node, swiftly delivering copies of the received frame to all
nodes that belong to the multicast group. The Switch is parameterised by a delay that
represents the time taken to process the frames, which can also be defined as a random
function.

In order to provide some insight into the obtainable results with this modelling and
simulation approach for EIP-based distributed systems, an example is presented. The results
of its simulation and how they could be analysed are then discussed in this section. Note
that we are aiming at obtaining an estimation of the worst-case end-to-end response time
for a number of transactions. A primary goal is to consider some fundamental aspects about
the analysis of the simulation results.

6.5 Example Scenario
The example system is constituted of three RIOs, one Controller and an interconnecting

switch (Figure 28).

 55

Chapter 6. Simulation Based Timing Analysis of EIP Networks.

56

Remote IO 3 Remote IO 2 Remote IO 1

Controller 1

Ethernet Switch

EAC

EA

C

I O O EA I OEA I I OI

Figure 28. Simulated system depiction.

The Controller node is composed of one IO module and two Controller modules. The
first RIO includes four IO modules, two for output and two for input. The second RIO also
includes four IO modules, three for input and one output. Finally, the last RIO contains
three IO modules, two for input and one output.

The system has nine end-to-end transactions (analogous to the end-to-end transaction
described in Section 2.3.5) between the RIOs and the Controller. This results in a total of
eighteen connections, half from the RIOs to the Controller (Input direction) and the other
half, from the Controller to the RIOs (Output direction).

Table 4. End-to-End transactions

Transaction Size
(Bytes)

RPI
(ms)

Connection:
Input Direction

Connection:
Output Direction

1 46 10 131 141
2 46 7 132 142
3 46 25 133 143
4 46 20 134 144
5 46 55 151 161
6 46 80 152 162
7 46 75 153 163
8 46 200 171 181
9 46 350 172 182

Table 4 presents the size, periodicity and identifiers of the system’s connections,
whereas Tables 5-7 provide the details about the mapping of connections to the system
modules.

As an example, Transaction 8 is initiated at the IOModule3 of RemoteIO1 (connection
171) with an RPI of 200 ms (Table 5). It is delivered to module 2 of the Controller (Table
6), where the data is processed, and the corresponding output is generated (connection 181).
This connection is then sent to the IOModule2 of RemoteIO3 (Table 7). The RPI of the
output connections is equal to the corresponding input connection.

 Chapter 6. Simulation Based Timing Analysis of EIP Networks.

Table 5. Input Connections

Input
Connection Node Module

ID RPI (ms)

171 200
RIO 1 IO module1

172 350

IO module 1 131 10

IO module 2 132 7

133 25
RIO 2

IO module 3
134 20

151 55

152 80 RIO 3 IO module1

153 75

Table 6. Connections at the controller

Module Input
Connection

Output
Connection

131 141
132 142
133 143

Controller 1
module 1

153 163
134 144
151 161
152 162
171 181

Controller 1
module 2

172 182

Table 7. Output connections

Node Module Output
Connections

IO module 1 141; 142; 14; 162
RIO 1

IO module 2 163

RIO 2 IO module 4 144

RIO 3 IO module 2 161; 181; 182

6.5.1 Statistical Results of the Simulation
Table 8 provides the results of the application of such approach to the analysis of the

simulation output data. In this, we will attempt to construct a confidence interval for the

 57

Chapter 6. Simulation Based Timing Analysis of EIP Networks.

58

end-to-end response time that can be expected in the long run. This estimation is based on
the observation of successive end-to-end response time values verified across simulation
replications and the variance of these observations. The number of replications performed
was 50, which was a number of replications that allowed obtaining an error below 25-26%
of the estimate for all transactions.

The X in the table below represents the estimation for the end-to-end response time of
the transactions. The margin of error (ε) gives a measure on how accurate the estimation is,
based on the variability of the estimation. The confidence level (99.9%) reflects the amount
of confidence that, in the long run, this approach will be able to approximate the true end-
to-end response time mean. With these values, it is possible to construct the confidence
intervals displayed.

Table 8. Results of simulation output using replication/deletion
(sorted by transaction periodicity)

Transaction
Estimation for 99.9% confidence

interval
(X ± ε ms)

99.9%
Confidence interval

(ms)
2 11.30 ± 2.53 [8.77,13.83]
1 15.81 ± 4.05 [11.76,19.86]
4 30.77 ± 3.79 [26.98,34.57]
3 38.36 ± 6.82 [31.53,45.18]
7 113.01 ± 18.86 [94.15,131.87]
5 83.13 ± 17.23 [65.90,100.36]
6 120.88 ± 15.13 [105.76,136.01]
8 300.70 ± 23.83 [276.87,324.53]
9 526.64 ± 34.53 [492.11,561.17]

This evaluation of the behaviour of a concrete system may be of relevance to the
systems designer, when a probabilistic analysis of the system is being carried out.

Note that this evaluation is more suitable for means and variance behaviour. Its
applicability for values on the tail of distributions (such as worst-case) is still object of
current work, thus the reader is referred to the next sections of this dissertation for further
discussion on these issues.

Some additional remarks that might be raised towards this analysis include the fact that
the simulation data needed to produce such results may be at a prohibitive computation
cost. This time actually depends on a number of variables. The complexity of the system
influences the number of events generated during the simulation, the variance of the
variables under study affect the size needed for each individual simulation replication, and
the margin of error desired, which is also influenced by the variation of the variables of
interest, may be controlled by the number of simulation replications. A close investigation
of these matters is beyond the scope of dissertation, nevertheless, it can be advanced that,
for the example presented, each replication took less than 2 minutes to run on a fairly old
machine (PIII 1GHz).

 Chapter 6. Simulation Based Timing Analysis of EIP Networks.

6.6 Summary
In this chapter, the modelling and simulation of EIP-based distributed systems

performed with the purpose of extracting temporal properties was delineated. The basic
blocks enabling to build EIP discrete-event simulations are detailed. Similar to what was
done in Chapter 5, the simulation is instantiated with an example scenario that allows
obtaining some results by applying the reasoning outlined in Chapter 4.

 59

C h a p t e r 7

CONCLUSIONS AND FUTURE WORK
7 Conclusions and Future Work

7.1 Summary and Conclusions
Ethernet-based technologies have already gained a strong position in the factory-floor.

For many years, deemed non determinist, Ethernet has gone through some evolution which
enables its use in real-time applications. Nevertheless, Ethernet technology, by itself, does
not include features above the lower layers of the OSI communication model. Although lots
of attention has been devoted to the timing analysis of Ethernet-like technologies and
solutions, most of the work on Ethernet has been restricted to the Data Link Layer level.
This dissertation investigates the extraction of overall temporal properties of COTS factory-
floor communication systems based on a concrete Ethernet-based COTS technology (EIP),
which provides a fully defined communication protocol stack.

Primarily, de inner workings of the distributed system to analyse are overviewed. The
main components of EIP systems are outlined and the major delay components in a defined
distributed transaction are identified.

In order to tackle the problem of devising appropriate tools for the timeliness analysis of
EIP systems, two main lines are followed.

One builds upon traditional real-time response time analysis to provide an analytical
formulation enabling to find end-to-end response times in EIP based distributed systems.
Although this analysis can still be further enhanced, it suffers of some pitfalls, being the
most important of these, the inherent pessimistic results. Per se it contains a relevant
contribution for the holistic analysis of Ethernet-based COTS systems.

The other approach promotes the idea that simulation is a useful tool for analysing and
understanding complex systems. Indeed, the use of discrete-event simulation models can be
a powerful tool for the timeliness evaluation of the overall system, but particular care must
be taken with the results provided by traditional statistical analysis techniques. Therefore,
some discussion was also introduced on the use of simulation results to perform statistical
timeliness analysis.

A closing discussion, based on the preceding models and results presented, can be
commenced by evaluating the distance between the worst-case of the analytical model
results and the average and worst-case that actually can be verified within a considerable
life-time of the simulation.

Besides the efforts made in the validation and analysis of the results correctness from
both the simulation and analytical models, comparing results from both models provides a
further step in their validation. As the analytical model developed is based on a set of

Chapter 7. Conclusions and Future Work.

62

worst-case assumptions, its results should always bound the results given by the simulation
model.

Table 9. Analytical model results for previously simulated scenario (Figure 28)
(sorted by transaction periodicity)

Input Output
Tr. Lisn→sw

(ms)
Lisw

(ms)
Lisw→en

(ms)
Lisn→sw

(ms)
Lisw

(ms)
Lisw→en

(ms)

Ri
(ms)

2 8.25 0.05 4.50 11.50 0.03 1.75 28.09
1 11.25 0.05 4.50 14.50 0.03 1.75 34.09
4 21.25 0.06 4.50 24.50 0.03 1.25 53.59
3 26.25 0.07 4.50 29.50 0.06 1.75 64.13
7 56.50 0.09 4.50 59.50 0.06 1.50 124.14
5 76.50 0.10 4.50 79.50 0.08 1.75 164.42
6 81.50 0.11 4.50 84.50 0.09 1.75 174.45
8 201.75 0.12 4.50 204.50 0.09 1.50 414.46
9 351.75 0.13 4.50 354.50 0.10 1.50 714.48

Table 9 exhibits the analytical model results for the scenario put forward earlier (Figure
28, Section 6.5). The previous data (from Table 9) is now set side by side, in Table 10,
with the simulation model results. The table displays both the estimate average and the
maximum value observe within all replications. The difference between the maximum
value observed and the worst-case predicted by the analytical model is exhibited, in
percentage, in the last column.

Table 10. Comparison of simulation with analytical model results
(sorted by transaction periodicity)

Simulation model results

Trans. Estimated
Average

(ms)

Maximum
observed

(ms)

Math. model results
(ms)

Difference
(1-Math. Model / Sim. max)

2 11.30 11.4 28.09 59%
1 15.81 16.0 34.09 53%
4 30.77 30.9 53.59 42%
3 38.36 38.9 64.13 39%
7 113.01 116.2 124.14 6%
5 83.13 85.7 164.42 48%
6 120.88 123.0 174.45 29%
8 300.70 305.3 414.46 26%
9 526.64 537.3 714.48 25%

A first observation to be made from the data in Table 10 is that the analytical model
indeed bounds the end-to-end response times observed in the simulation. The expected
pessimist inherent to the analytical formulation, based on a number of worst-case
assumptions is confirmed, weighing the difference between the analytical model results and

 Chapter 7. Conclusions and Future Work.

 63

the maximum observed through the set of simulation replications. Even more important is
the fact that as the system becomes more complex, the pessimism increases, thus increasing
the necessity to consider a stochastic representation of the events.

Actually, it is also noticeable that the maximum values observed are much closer to the
estimated long-run average behaviour than the analytical model predictions. This is also
justifiable by the fact that the analytical model aggregates a number of worst-case scenarios
for the several delay components that, in reality, hardly ever occur in conjunction. This
further motivates the need for different types of simulation and simulation output analysis,
adequate to evaluate such issues correctly, rather than only extraction average case
performance measurements. These matters are already currently being assessed [14] and
will be overviewed in the Future Work Section.

The problem of developing methods to correctly introduce and handle probabilistic
assumptions in analytical models has already been tackled by several researchers [64-69].
Nevertheless, even assuming the existence of a probabilistic characterisation of the system
components, it is also clear that the correct characterisation, in statistical terms, of a system
is very much sensitive and dependent on the concrete system and on the concrete
application of the system. This characterisation becomes a problem with greater relevance
when the complexity of the system is increasingly higher and an a priori evaluation of the
system is required. Additionally, the correct results of a probabilistic analysis are, in great
magnitude, dependent on these inputs.

The use of discrete event simulation models is thus an appealing approach for the
analysis of intricate systems. Being a very practical tool and because of its approximation to
the real world, discrete-event simulation presents itself as an attractive method to acquire
knowledge of elaborate distributed systems, recurring to the statistical background already
established for the analysis of simulation data.

As the complexity of systems increases (perhaps to the point where worst-case
analytical-based techniques will fail to be useful), simulation or a combination of
simulation with other techniques may be essential. It is however noted that simulation can
be very good at modelling the middle of distributions, but there are numerous problems
when trying to extract other performance measures, like worst-case end-to-end response
time. The Future Work Section of this dissertation unveils some approaches to extract
other measures of performance than means.

Chapter 7. Conclusions and Future Work.

64

7.2 Future Work
In the course of the development of this dissertation a number of possible ramifications

for further work have sprung. Some of these are already in the process of investigation,
while others are little more than suggestions for further development. The most relevant of
these are:

• fine-tuning and thorough validation of the models;

• development of a wrapping layer on top of the simulation model;

• introduction of less pessimistic assumptions into the analytical model;

• exploration of different performance measures for simulation.

7.2.1 Fine-tuning and Thorough Validation of the Models
The models presented are, to a considerable degree, tuned and validated. However, it

was not possible to perform experimentation and comparison with large real systems. It is
necessary to point out that such large systems are difficult to build, because of the high
costs involved.

Further validations and fine-tuning could certainly be accomplished by comparing the
models results with real data, especially in order to have a better understanding of how
these models scale up.

7.2.2 Development of a Wrapping Layer
At this moment, the configuration of the simulation model is done directly in

OMNeT++ configuration files. This is actually a very laborious task. It comprises the
definitions of nodes, connections and their topology in the network. Each of these possesses
a great number of parameters to configure, and, most of these configurations are repetitive
and quite obtuse to do by hand.

The development of an application to hide these details from users, and enable them to
easily build different simulations, reducing the repetitive tasks needed and providing a more
intuitive interface to the system designer, would be of great value.

7.2.3 Introduction of Less Pessimistic Assumptions
Chapter 5 provided an effort to formulate an analytical solution enabling to find end-to-

end response times in EIP based distributed systems. This formulation includes some rather
pessimistic assumptions. Further developments on this model can possibly relax some of
these assumptions and therefore reduce the pessimism of the overall model.

Still, with the development of simulation models for the same system, another
perspective can be pursued. Discrete event simulation can also provide results enabling less
pessimistic assumptions (e.g. on precedence or offsets of events) for the analytical response
time formulations.

 Chapter 7. Conclusions and Future Work.

 65

7.2.4 Different Measures of Performance in Simulation Studies
Simulation model are usually a very good tool for evaluation of average behaviour.

Earlier, in Section 4.4.2, some well known approaches for estimating distributions out of
simulation output, and the confidence which can be applied to its mean values where
presented and applied. But, what about worst-case behaviour?

This is the basis for a discussion on the applicability of such approaches to derive
confidence on the tail of distributions, where the worst-case is expected to be. Some options
to extract worst-case performance measures that could be subject of future advancements
are now briefly explored.

Extreme Value Theory
Goodness-of-fit tests may be used to evaluate the likeness between the sample data

distribution and a theoretical distribution. If it is possible to obtain a good approximation
from the theoretical distribution, then it is usually feasible to obtain good estimates of the
output variables. However, for the purpose of drawing worst-case estimates from these
distributions we are considering the tails of the probabilistic distributions and it is known
that these are the areas where less accuracy exists. Considering that we capture a sufficient
number of values close to the worst-case value during the simulation runs, we will probably
end up with a heavy-tailed distribution. A distribution function or random variable is said to
be heavy-tailed if it presents a high coefficient of variance. For example, in [70], the
authors found that the distribution of execution times was better represented by a Gumbel
distribution (a heavy tail-distribution). Other examples of heavy tail distributions include all
extreme values distributions (Gumbel, Fréchet and Weibull), t-student or Pareto
distributions.

An important property related to heavy tail distributions is that they are (essentially)
invariant under maximisation (extreme value theory) [71]: This means that, if X(1), X(2),
… are independent and identically distributed with common distribution function F that is
heavy-tailed and M(n) = max(X(1),…,X(n)), then GnnM →α/)(, as , in which
G is the Fréchet distribution. This may suggest a generalisation for extreme values, similar
to the central limit theorem for means, when n is large enough.

∞→n

Heavy-tail distributions have been object of recent study in the fields of load balancing
(CPU, network), job scheduling (Web servers) and complex system studies. Particularly,
there are some proposals for modelling and analysing heavy-tail distributions for estimation
of rare event probabilities with computable tractable techniques [72, 73].

Average Maximums
Derived from the methods referred in Section 4.4 for simulation output analysis, an

intuitive approach, for trying to obtain an estimator for the worst-case value of the output
variable is to pick the maximum value in the set of data from each simulation replica,
instead of calculating a mean value. The problem of such approach is the assumption of a
normally distributed variable, needed for the applicability of the previously mentioned
methods for estimating means. A possible solution could be to group the values obtained in
batches and apply the assumption of a normally distributed average over the means of each
batch, in a similar way to the batch means procedure. Doing this could result in an

Chapter 7. Conclusions and Future Work.

66

additional statistical error introduced by this second grouping. Additionally, the results
obtained in this way, would not be exactly worst-case values, but average maximums,
which can be a rather different thing and, to achieve the conditions of the central limit
theorem, much more data would be necessary, most likely making this an impractical
approach.

Rare Event Simulation
It is possible to view the event of a worst-case as a rare event, and the average system

behaviour tends to be far apart from the worst-case. Obtaining precise estimates of such
rare event probabilities using classical simulation can require prohibitively long run
lengths.

A popular technique applied for the simulation of rare events is called importance
sampling. Basically, importance sampling comprises of to different approaches. One, that
attempts to modify the probability dynamics, in such a way that rare events will occurs
more frequently. An alternative importance sampling technique is trajectory splitting, based
on the assumption that there exist some well identifiable intermediate system states that
much more often that the rare events of interest. The idea is to detect these intermediate
states during simulation execution and split the simulation execution into several
independent sub-trajectories, simulated from that state. Naturally, to obtain the final
estimator, the results must be adjusted accordingly to the modification introduced. See [74]
and references within for further information about importance sampling techniques.

Importance sampling may indeed obtain a significant reduction in the amount of
observations required to obtain the same estimator precision as would be obtained in a
simulation that does not use importance sampling, however, this requires a considerable
amount of problem-specific knowledge from the simulation designer and how the modified
distributions introduced will affect the distribution of the target events of interest. Reducing
the simulation length, while simultaneously retaining the ease and flexibility of simulation
is an important issue, receiving increasing considerable attention from researchers.

REFERENCES

[1] K. Mashford, "Next generation manufacturing", IEEE Manufacturing Engineer, vol. 82(6), pp.
30-40, 2003.

[2] Rockwell Automation, "Making Sense of e-Manufacturing: a Roadmap for Manufacturers",
Rockwell Automation Inc., Cleveland, Ohio, Industry White Paper, 2000. Available online at
www.rockwellautomation.com.

[3] E. Tovar, L. M. Pinho, and L. Almeida, "Position Paper on Time and Event-triggered
Communication Services in the Context of e-Manufacturing", in proceedings of the IEEE
Workshop on Large Scale Real-Time and Embedded Systems (LARTES'02), Austin, Texas, US,
2002.

[4] John Stankovic and K. Ramamritham, "Real-Time computing systems: The next generation", in
Tutorial: hard real-time systems. Los Alamitos, CA, USA: IEEE Computer Society Press, 1989,
pp. 14-37.

[5] Giorgio C. Buttazzo, Hard real-time computing systems predictable scheduling algorithms and
applications. Boston: Kluwer Academic Publishers, 1997.

[6] J. C. Palencia Gutierrez and Michael Gonzalez Harbour, "Exploiting Precedence Relations in
the Schedulability Analysis of Distributed Real-Time Systems", in proceedings of the 20th IEEE
Real-Time Systems Symposium (RTSS'99), Phoenix, Arizona, pp. 328-339, 1999.

[7] K. Tindell, "Adding time-offsets to schedulability analysis", University of York Dept. of
Computer Science, Heslington, York, England, Technical Report YCS-94-221, 1994. Available
online at ftp://ftp.cs.york.ac.uk/reports/YCS-94-221.ps.Z.

[8] J. C. Palencia Gutierrez and Michael Gonzalez Harbour, "Schedulability Analysis for Tasks
with Static and Dynamic Offsets", in proceedings of the 19th IEEE Real-Time Systems
Symposium (RTSS'98), Madrid, Spain, pp. 26-37, 1998.

[9] K. Tindell, "Holistic schedulability analysis for distributed hard real-time systems",
Microprocessors and Microprogramming, Elsevier Science Publishers, vol. 50(No. 2-3), pp.
117-134, 1994.

[10] Marco Spuri, "Analysis of Deadline Scheduled Real-Time Systems", INRIA, Technical Report
2772, April 1996. Available online at http://www-rocq.inria.fr/reflecs/research_reports/RR-
2772.pdf.

[11] ODVA, "Ethernet/IP Specification (Release 1.0)", ControlNet International and Open
DeviceNet Vendor Association, Ethernet/IP Specification, June 5 2001. Available online at
http://www.odva.org/.

[12] N. Pereira and E. Tovar, "Ethernet-based Systems: Contributions to the Holistic Analysis", in
proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS'4) - WIP
Session, Catania, Italy, pp. 25-28, 2004.

References.

68

[13] N. Pereira, E. Tovar, and L. M. Pinho, "INDEPTH: Timeliness Assessment of Ethernet/IP-based
Systems", in proceedings of the 12th Annual International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems (MASCOTS'04), Volendam,
The Netherlands, pp. 192-201, 2004.

[14] N. Pereira, E. Tovar, B. Baptista, L. M. Pinho, and I. Broster, "A Few What-Ifs on Using
Statistical Analysis of Stochastic Simulation Runs to Extract Timeliness Properties", in
proceedings of the 1st International Workshop on Probabilistic Analysis Techniques for Real-
time and Embedded Systems (PARTES'04), Piza, Italy, 2004.

[15] N. Pereira, E. Tovar, and L. M. Pinho, "Timeliness in COTS Factory-Floor Distributed Systems:
What Role for Simulation", in proceedings of the 5th IEEE International Workshop on Factory
Communication Systems (WFCS'04), Vienna, Austria, pp. 13-21, 2004.

[16] Haydn A. Thompson, "Wireless and Internet communications technologies for monitoring and
control", Control Engineering Practice, Elsevier Science, vol. 12(6), pp. 781-791, 2004.

[17] G. Kaplan, "Ethernet's winning ways", IEEE Spectrum, vol. 38(1), pp. 113-115, 2001.

[18] Berta Batista, "Industrial Ethernet: Building Blocks for a Holistic Approach", in proceedings of
the 4th IEEE International Workshop on Factory Communication Systems (WFCS'02) - WIP
Session, Vasteräs, Sweden, 2002.

[19] M. Volz, "Quo Vadis Layer 7", The Industrial Ethernet Book, vol. 5, 2001, 8-10. Available
online at http://ethernet.industrial-networking.com/.

[20] ANSI/IEEE, "Telecommunications and information exchange between systems-Local and
metropolitan area networks - Common Specification", ANSI/IEEE Std 802, 1998. Available
online at http://standards.ieee.org/getieee802/802.3.html.

[21] Andrew S. Tanenbaum, Computer Networks, 3rd ed: Prentice Hall, Inc, 1996.

[22] T. Skeie, S. Johanssen, and O. Holmeide, "The Road to and End-to-End Deterministic
Ethernet", in proceedings of the 4th IEEE International Workshop on Factory Communication
Systems (WFCS'02), Vasteras, Sweden, pp. 3-9, 2002.

[23] ODVA, "CIP Common Specification (Release 1.0)", ControlNet International and Open
DeviceNet Vendor Association, CIP Specification, 2000. Available online at
http://www.odva.org/.

[24] ODVA, "DeviceNet Specification (Release 2.0)", ControlNet International and Open DeviceNet
Vendor Association, DeviceNet Specification, April 1 2001. Available online at
http://www.odva.org/.

[25] ODVA, "ControlNet Specification (Release 2.0)", ControlNet International and Open
DeviceNet Vendor Association, ControlNet Specification, December 31 1999. Available online
at http://www.odva.org/.

[26] ISO, "Road vehicles - Interchange of digital information - Controller Area Network (CAN) for
high-speed communication", International Organization for Standardization, ISO 11898, 1993.
Available online at http://www.iso.org/.

[27] L. Almeida, E. Tovar, J. Fonseca, and F. Vasques, "Schedulability Analysis of Real-Time
Traffic in WorldFIP Networks: an Integrated Approach", IEEE Transactions on Industrial
Electronics, vol. 49(5), pp. 1165-1174, 2002.

[28] Averill M. Law and W. David Kelton, Simulation modeling and analysis, 3rd ed. New York:
McGraw-Hill, 2000.

 References.

 69

[29] Richard A. Meyer and Rajive Bagrodia, "PARSEC User Manual, Release 1.1", UCLA Parallel
Computing Laboratory, User Manual August 1998. Available online at
http://pcl.cs.ucla.edu/projects/parsec/manual.pdf.

[30] Pawel Gburzynski, "An Overview of SMURPH: an Object-oriented Configurable Simulator for
Low-Level Communication Protocols", Dept. of Computing Science of University of Alberta,
Edmonton, Alberta, Canada, Technical Report, 1995. Available online at
http://www.cs.ualberta.ca/~pawel/SMURPH/report.pdf.

[31] S.V. Rice, A. Marjanski, H.M. Markowitz, and S.M. Bailey, "Object-oriented SIMSCRIPT", in
proceedings of the 37th Annual Simulation Symposium (ANSS'04), Hyatt Regency Crystal
City, Arlington, VA, pp. 178-186, 2004.

[32] J.R. Holmevik, "Compiling SIMULA: a historical study of technological genesis", IEEE Annals
of the History of Computing, vol. 16(4), pp. 25-37, 1994.

[33] H. D. Schwetman, "Using CSIM to model complex systems", in proceedings of the Winter
Simulation Conference, San Diego, California, pp. 246 - 253, 1988.

[34] Xinjie Chang, "Network simulations with OPNET", in proceedings of the Winter Simulation
Conference, Pheoenix Az, pp. 307-314, vol.1, 1999.

[35] B. Lewis Barnett, "An Ethernet performance simulator for undergraduate networking", in
proceedings of the 24th SIGCSE technical symposium on Computer science education,
Indianapolis, Indiana, United States, pp. 145 - 150, 1993.

[36] C.S. McDonald, "A Network Specification Language and Execution Environment for
Undergraduate Teaching", in proceedings of the ACM Computer Science Education Technical
Symposium, San Antonio, Texas, pp. 25-34, 1991.

[37] S. McCanne and S. Floyd, "ns-Network Simulator", University of California, Berkley, Online
Resources, 1995. Available online at http://www-mash.cs.berkeley.edu/ns/.

[38] S. Keshav, "REAL 5.0 User Manual", Cornell University, User Manual, August 13th 1997.
Available online at http://www.cs.cornell.edu/skeshav/real/user.html.

[39] A. Varga, "OMNeT++", IEEE Network, Software Tools for Networking Column, vol. 16(4),
2002.

[40] A. Varga, "OMNeT++ Discrete Event Simulation System", v2.3, 2004. Web Site:
http://www.omnetpp.org/.

[41] John Stankovic, "Misconceptions about Real-Time Computing: A Serious Problem for Next-
Generation Systems", IEEE Computer, vol. 21(10), pp. 10-19, 1988.

[42] M. Joseph and P. Pandya, "Finding Response Times in a Real-Time System", The Computer
Journal, British Computer Society, vol. 29(5), pp. 390-395, 1986.

[43] A. Burns, "Scheduling Hard Real-Time Systems: A Review", IEEE Software Engineering
Journal, Special Issue on Real-Time Systems, vol. 6(3), pp. 116-128, 1991.

[44] C. M. Krishna and Kang G. Shin, Real-time systems. New York: McGraw-Hill, 1997.

[45] C. L. Liu and James W. Layland, "Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment", Journal of the ACM (JACM), vol. 20(1), pp. 46-61, 1973.

[46] J. Leung and J. Whitehead, "On the Complexity of fixed-priority Scheduling of Periodic Real-
Time Tasks", Performance Evaluation, Elsevier Science, vol. 22(4), pp. 237-250, 1982.

References.

70

[47] E. Lawler and C. Martel, "Scheduling Periodically Occurring Tasks on Multiple Processors",
Information Processing Letters, Elsevier Science, vol. 12(1), pp. 9-12, 1981.

[48] K. Tindell, "An extendible approach for analysing fixed priority hard real-time tasks",
University of York Dept. of Computer Science, Heslington, York, England, Technical report
YCS-92-189, 1992. Available online at ftp://ftp.cs.york.ac.uk/reports/YCS-92-189.ps.Z.

[49] L. Sha, R. Rajkumar, and J. Lehoczky, "Priority inheritence protocols: An approach to Real-
Time Synchronization", IEEE Transactions on Computers, vol. 39(9), pp. 1175-1185, 1990.

[50] N. Audsley, A. Burns, M. Richardson, K Tindell, and A Wellings, "Applying New Scheduling
Theory to Static Priority Preemptive Scheduling", IEEE Software Engineering Journal, vol.
8(5), pp. 285-292, 1993.

[51] K. Tindell, H. Hansson, and A. Wellings, "Analysing real-time communications: controller area
network (CAN)", in proceedings of the 15th Real-Time Systems Symposium (RTSS'04), pp.
259-263, 1994.

[52] E. Tovar and F. Vasques, "Pre-run-time schedulability analysis of P-NET fieldbus networks", in
proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society
(IECON'98), Aachen, Germany, pp. 236-241, 1998.

[53] E. Tovar, F. Vasques, and A. Burns, "Communication Response Time in P-NET Networks:
Worst-Case Analysis Considering the Actual Token Utilisation", Real-Time Systems Journal,
Kluwer Academic Publishers, vol. 22(3), pp. 229-249, 2002.

[54] E. Tovar and F. Vasques, "Real-time fieldbus communications using Profibus networks", IEEE
Transactions on Industrial Electronics, vol. 46(6), pp. 1241-1251, 1999.

[55] H. Hansson, M. Sjodin, and K. Tindell, "Guaranteeing real-time traffic through an ATM
network", in proceedings of the 30th Hawaii International Conference on System Sciences
(HICSS'97), Maui, Hawaii, pp. 44-53, vol. 5, 1997.

[56] K. Pawlikowski, H. D. J. Jeong, and J. S. R. Lee, "On credibility of simulation studies of
telecommunication networks", IEEE Communications Magazine, vol. 40(1), pp. 132-139, 2002.

[57] David S. Moore and George McCabe, "From probability to Inference", in Introduction to the
practice of statistics, 3rd ed: W.H. Freeman and Company, 1999, pp. 373-431.

[58] Jerry Banks, John S. II Carson, Barry L. Nelson, and David M. Nicol, Discrete-Event System
Simulation. Upper Saddle River: Prentice Hall, 2001.

[59] P. Heidelberger and P. A. W. Lewis, "Quantile Estimation in Dependent Sequences",
Operations Research, vol. 31(1), pp. 185-209, 1984.

[60] J.-S. R. Lee, D. McNicle, and K. Pawlikowski, "Quantile Estimations in Sequential Steady-
State Simulation", in proceedings of the European Simulation Multiconference (ESM'99),
International Society for Computer Simulation, Warsaw, pp. 168-174, 1999.

[61] Yequiong Song, Anis Koubaa, and Francois Simonot, "Switched Ethernet for Real-Time
Industrial Communication: Modelling and Message Buffering Delay Evaluation", in
proceedings of the 4th IEEE Int. Workshop on Factory Communication Systems (WFCS02),
Vasteräs, Sweden, pp. 27-35, 2002.

[62] Jean-Philippe Georges, Eric Rondeau, and Thierry Divoux, "Evaluation of switched Ethernet in
an industrial context by using the Network Calculus", in proceedings of the 4th IEEE Int.
Workshop on Factory Communication Systems (WFCS02), Vasteräs, Sweden, pp. 19-26, 2002.

[63] S. Deering, "Host Extensions for IP Multicasting", RFC 1112: Stanford University, 1989.

 References.

 71

[64] Giorgio C. Buttazzo and L. Abeni, "QoS Guarantee Using Probabilistic Deadlines", in
proceedings of the 11th IEEE Euromicro Conference on Real-Time Systems (ECRTS'99), York,
UK, pp. 242-249, 1999.

[65] J. Díaz, D. García, K. Kim, C. Lee, L. Lo Bello, J. López, S. L. Min, and O. Mirabella,
"Stochastic Analysis of Periodic Real-Time Systems", in proceedings of the 23rd IEEE Real-
Time Systems Symposium (RTSS'02), Austin, Texas, pp. 289-300, 2002.

[66] M. K. Gardner, "Analysis and Scheduling of Critical Soft Real-Time Systems", PhD thesis,
University of Illinois, Urbana Champaign, 1999. Available online at
http://www.cs.uiuc.edu/Dienst/UI/2.0/Describe/ncstrl.uiuc_cs/UIUCDCS-R-99-2114.

[67] J. Lehoczky, "Real-Time Queuing Network Theory", in proceedings of the 18th The IEEE Real-
Time Systems Symposium (RTSS'97), San Francisco, California, pp. 58-67, 1997.

[68] J. P. Lehoczky, "Real-Time Queuing Theory", in proceedings of the 17th IEEE Real-Time
Systems Symposium (RTSS'96), Washington, DC, pp. 186-195, 1996.

[69] T. S. Tia, Z. Dens, M. Shankar, M. Storch, J. Sun, L. C. Wu, and J. S. Liu, "Probabilistic
Performance Guarantees for Real-Time Tasks with Varying Computation Times", in
proceedings of the Real-Time Technology and Applications Symposium (RTAS'95), Chicago,
Illinois, pp. 164-173, 1995.

[70] S. Edgar and A. Burns, "Statistical Analysis of WCET for Scheduling", in proceedings of the
22nd IEEE Real-Time Systems Symposium (RTSS'01), London, UK, pp. 215-224, 2001.

[71] S. Coles, An Introduction to Statistical Modeling of Extreme Values. London: Springer-Verlag,
2001.

[72] D. Starobinski and M. Sidi, "Modeling and Analysis of Heavy-Tailed Distributions via Classical
Telegraffic Methods", Queueing Systems (QUESTA), vol. 36(1-3), pp. 243-267, 2000.

[73] S. Asmussen, D. P. Kroese, and R. Rubinstein, "Heavy Tails, Importance Sampling and Cross-
Entropy", University of Aarhus August 2003. Available online at
http://mefast.sta.unipi.gr/iwap2004/Abstracts/FinalAbstracts/IWAP2004_Rubinstein.pdf.

[74] J.K. Townsend, Z. Haraszti, J.A. Freebersyser, and M. Devetsikiotis, "Simulation of rare events
in communications networks", IEEE Communications Magazine, vol. 36(8), pp. 36-41, 1998.

GLOSSARY

C++SIM Programming tool for simulation of discrete processes based on the C++
language. See Section 3.2.

CAN Controller Area Network is a serial bus standard originally developed by
Robert Bosch GmbH for connecting electronic control units. It was initially
created for the automotive market (as a vehicle bus). But nowadays it is used
in many embedded control applications. The CAN data link layer protocol is
standardised in ISO 11898-1 (2003). This standard describes mainly the data
link layer - comprised by logical link control (LLC) sublayer and the Media
Access Control (MAC) sub-layer - and some aspects of the physical layer of
the ISO/OSI Reference Model. All the other protocol layers are left to the
network designer's choice.

CIP Control and Information Protocol is an application layer protocol that
implements a distributed object model. It is a very versatile protocol that has
been designed with the automation industry in mind. However, due to its very
open nature, it can be applied to many more areas. See Section 2.3.

CNET Discrete-event network simulator enabling experimentation with various
data-link layer, network layer, routing and transport layer networking
protocols. See Section 3.3.

ControlNet ControlNet technology provides deterministic and repeatable,
communications for the most demanding factory-floor automation
applications. It delivers high-speed transport of both time-critical I/O and
messaging data on single or redundant physical media. See Section 2.3.

CORBA Common Object Request Broker Architecture. The CORBA standard is
created and controlled by the Object Management Group (OMG). It defines
APIs, communication protocol, and object/service information models to
enable heterogeneous applications written in various languages running on
various platforms to interoperate. CORBA therefore provides platform and
location transparency for well-defined objects, which are the fundamental
underpinnings of any distributed computing platform.

CoS Change-of-State. See Section 2.3.

COTS Commercial-Of-The-Shelf. Term for systems which its components are
manufactured commercially. COTS systems are in contrast to systems that
are produced entirely and uniquely for the specific application.

Glossary.

74

CSIM Programming tool for simulation of discrete processes based on the C
language. See Section 3.2.

CSMA/CD Carrier Sense Multiple Access with Collision Detection is a network control
protocol in which a carrier sensing scheme is used and a transmitting data
station that detects another signal while transmitting a frame, stops
transmitting that frame, transmits a jam signal, and then waits for a random
time interval before trying to send that frame again.

CTDMA Concurrent Time Domain Multiple Access. A time slice medium access
algorithm used by ControlNet. See Section 2.3.

DCOM Distributed Component Object Model is a Microsoft proprietary technology
for software components distributed across several networked computers. It is
descended from COM, later part of COM+. It has been deprecated in favour
of Microsoft .NET.

DEC Digital Equipment Corporation is a pioneering company in the American
computer industry. This acronym was once officially used by DEC itself, but
discarded in favour of “Digital” in order to avoid a trademark dispute. They
were later acquired by Compaq, who subsequently merged with Hewlett-
Packard. As of 2004 their product lines are still produced under the HP name.

DeviceNet The DeviceNet network is an open low-level network that provides
connections between simple industrial devices (such as sensors and actuators)
and higher-level devices (such as PLC controllers and computers). See
Section 2.3.

EDF Earliest Deadline First is a dynamic priority real-time scheduling policy.
With EDF, the task with the earliest deadline is always executed first. See
Section 4.2.

EIP Ethernet/IP.

Ethernet/IP Ethernet/IP (EIP), where IP stands for Industrial protocol is a high-level
industrial protocol for industrial automation applications. Built on the
standard TCP/IP protocol suite, it uses all the traditional Ethernet hardware
and software to define an application layer protocol for configuring, accessing
and controlling industrial automation devices. Ethernet/IP classifies Ethernet
nodes as predefined device types with specific behaviours. The set of device
types and the EIP application layer protocol is based on the Control and
Information Protocol (CIP). See Section 2.3

Fieldbus A generic term used to describe a common communications protocol for
control systems and/or field instruments.

FPS Fixed Priority Scheduling. See Section 4.2.

 Glossary.

 75

IEEE The Institute of Electrical and Electronics Engineers is a non-profit,
professional organisation based in the United States. The IEEE was formed in
1963 by the merger of the Institute of Radio Engineers (IRE) and the
'American Institute of Electrical Engineers' (AIEE). The IEEE has branches
in many parts of the world. Its members are electrical engineers, computer
scientists, telecommunications workers, etc. Its goal is to promote knowledge
of electrical engineering. One of its most important roles is in establishing
standards for computers formats and devices.

IGMP The Internet Group Management Protocol is a communications protocol used
to manage the membership of Internet Protocol multicast groups. IGMP is
used by IP hosts and adjacent multicast routers to establish multicast group
memberships. It is an integral part of the IP multicast specification, like
ICMP for unicast connections.

Java/RMI The Java Remote Method Invocation API, or RMI, is an application
programming interface for performing remote procedural calls.

MAC Medium Access Control. The lower sub-layer of the OSI data link layer, the
interface between a node's Logical Link Control and the network's physical
layer. The MAC differs for various physical media. The MAC sub-layer is
primarily concerned with breaking data up into data frames, transmitting the
frames sequentially, processing the acknowledgment frames sent back by the
receiver, handling address recognition, and controlling access to the medium.

NED NEtwork Description is an OMNeT++ specific language usage to define a
network’s properties in a modular way. See Section 3.4.

NetSim Simulation package intended to offer a very detailed simulation of
Ethernet.3.3

Ns-2 Network Simulator 2 is a discrete event simulator targeted at networking
research. Ns-2 provides substantial support for simulation of TCP, routing,
and multicast protocols over wired and wireless (local and satellite) networks.
See Section 3.3.

OMNeT++ Objective Modular Network Testbed in C++, a public-source, object-oriented
modular discrete event simulation package that can be used for modelling:
communication protocols, computer networks and traffic modelling,
multiprocessors and distributed systems, etc. OMNeT++ also supports
animation and interactive execution. See Section 3.4.

OPC OLE for Process Control is the original name for a standard developed in
1996 by an industrial automation industry task force. The standard specified
the communication of real-time plant data between control devices from
different manufacturers. The original standard was based on the OLE COM
and DCOM technologies developed by Microsoft Corporation for the MS
Windows operating system family. The standard is now maintained by the
OPC Foundation and has been renamed the OPC Data Access standard.

Glossary.

76

OPNET OPNET is widely held has the state-of-art in network simulation, its suite of
products that combines predictive modelling and a comprehensive
understanding of networking technologies to enable design, deployment, and
management of network infrastructures, network equipments, and networked
applications. See Section 3.3.

OSI The Open Systems Interconnection Reference Model (OSI Model or OSI
Reference Model for short) is a layered abstract description for
communications and computer network protocol design, developed as part of
the Open Systems Interconnect initiative. It is also called the OSI seven layer
model. The model divides the functions of a protocol into a series of layers.
Each layer has the property that it only uses the functions of the layer below,
and only exports functionality to the layer above. A system that implements
protocol behaviour consisting of a series of these layers is known as a
'protocol stack' or 'stack'. Protocol stacks can be implemented either in
hardware or software, or a mixture of both. Typically, only the lower layers
are implemented in hardware, with the higher layers being implemented in
software.

PARSEC PARallel Simulation Environment for Complex systems, a C-based simulation
language, developed by the UCLA Parallel Computing Laboratory, for
sequential and parallel execution of discrete-event simulation models. See
Section 3.2.

PRNG A Pseudo-Random Number Generator is an algorithm which generates a
sequence of numbers, the elements of which are approximately independent
of each other.

RM Rate Monotonic real-time scheduling policy. The term “rate monotonic”
originated as a name for the optimal task priority assignment in which higher
priorities are accorded to tasks that execute at higher rates (that is, as a
monotonic function of rate). Rate monotonic scheduling is a term used in
reference to fixed priority task scheduling that uses a rate monotonic
prioritisation. See Section 4.2.

RPI Requested Packet Interval. Parameter that defines the periodicity of CIP
connections. See Section 2.3.

SIMSCRIPT SIMSCRIPT is a simulation language with both declarative and procedural
features, designed for discrete-event and hybrid discrete/continuous
modelling. See Section 3.2.

SIMULA The SIMULA programming language was designed and built at the
Norwegian Computing Center (NCC) in Oslo between 1962 and 1967. It was
originally designed and implemented as a language for discrete event
simulation, but was later expended and re-implemented as a full scale general
purpose programming language. See Section 3.2.

 Glossary.

 77

SMURPH A System for Modelling Unslotted Real-time PHenomena is intended to the
simulating communication protocols at the medium access control level. See
Section 3.3.

TCP/IP The Internet protocol suite is the set of protocols that implement the protocol
stack on which the Internet runs. It is sometimes called the TCP/IP protocol
suite, after the two most important protocols in it: the Transmission Control
Protocol (TCP) and the Internet Protocol (IP), which were also the first two
defined.

TCP Transmission Control Protocol is a connection-oriented, reliable delivery
byte-stream transport layer protocol currently documented in IETF RFC 793.

UDP The User Datagram Protocol is a minimal message-oriented transport layer
protocol that is currently documented in IETF RFC 768.

TCP/UDP/IP In this dissertation, used to denominate the Internet protocol suite,
emphasising the use of the UDP protocol layer.

TDMA Time Division Multiple Access is a medium access control scheme for shared
medium networks. It allows several users to share the same frequency by
dividing it into different time slots. The users transmit in rapid succession,
one after the other, each using their own timeslot. See Section 5.4.

WCET Worst-case Execution Time. See Section 4.2.

WWW The World Wide Web (the “Web” or “WWW“ for short) is a distributed (not
centralised) hypertext system that operates over the Internet. Hypertext is
browsed using a program called a web browser which retrieves pieces of
information (called “documents” or “web pages”) from web servers (or “web
sites”) and displays them on your screen. You can then follow hyperlinks on
each page to other documents or even send information back to the server to
interact with it.

INDEX

B
Backplane, 15, 45, 49, 50, 51, 53, 54, 83, 85, 89,

98, 101, 109, 110, 111, 112
baseband, 6
base-band, 6

C
C++SIM, 19, 71
CAN, ix, 10, 71
Change of State, 11
CIP, ix, 9, 10, 11, 12, 13, 14, 49, 50, 51, 52, 54,

71, 72, 74, 89, 91, 94, 106, 110, 116, 124
CIP connection, 11, 13, 14, 50, 74
CNET, 20, 71
Commercial-Off-The-Shelf, i, 5
ControlNet, 10, 71, 72
CORBA, ix, 71
CoS, ix, 11, 71
COTS, i, ix, 3, 5, 6, 59, 71
CSIM, 19, 72
CSMA/CD, ix, 6, 7, 72
CTDMA, ix, 10, 72
Cyclic, 11, 14

D
DCOM, ix, 72, 73
DEC, ix, 6, 72
DeviceNet, 10, 72

E
EDF, ix, 28, 29, 30, 72
Ethernet, i, iii, ix, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 20, 21, 44, 46, 47, 49, 50, 51, 54, 55,
59, 72, 73, 89, 97, 98, 100, 101, 102, 106,
107, 110

Ethernet/IP, i, ix, 3, 6, 9, 10, 12, 13, 14, 43, 44,
49, 50, 53, 55, 59, 62, 72, 89, 97, 98, 100,
101, 102, 106, 110

Explicit Messaging, 11

F
field-bus, 5
Fieldbus, 72
FPS, ix, 28, 72

I
IEEE, ix, 6, 7, 8, 9, 73
IGMP, ix, 12, 73
Implicit Messaging, 11
Industrial Protocol, 6
Intel, 6

J
Java/RMI, ix, 73

L
luminiferous ether, 6

M
MAC, ix, 7, 8, 19, 34, 50, 55, 71, 73, 123, 124,

125
Module, 51, 57, 89, 90, 91, 92, 93, 94, 95, 96,

97, 98, 99, 100, 101, 102, 103, 109, 111, 114,
115, 116, 117, 118, 120, 121, 122, 123, 124,
125, 126, 127, 129

multicast, 11, 12, 13, 20, 54, 55, 73, 93, 124, 128

N
NED, ix, 22, 49, 50, 51, 52, 53, 54, 73
NetSim, 20, 73
Ns-2, 20, 73

O
OMNeT++, ix, 20, 21, 22, 49, 50, 51, 53, 54, 55,

62, 73, 123, 127
OPC, ix, 73
OPNET, 19, 74
OSI, ix, 10, 71, 73, 74

P
PARSEC, 18, 74
Performance, 41, 63
Polled, 11
PRNGs, 36

Index.

R
Real-time, 19, 25, 29, 75
RM, ix, 28, 29, 30, 32, 74
RPI, ix, 11, 13, 44, 47, 52, 56, 57, 74, 92, 121,

122, 123

S
Scheduling, ix, 27, 72
SIMSCRIPT, 19, 74
SIMULA, 19, 74
SMURPH, 19, 75
Strobed, 11
Switch, 15, 46, 49, 54, 55, 95, 96, 127, 128, 129,

130

T
TCI, 8
TCP/IP, ix, 8, 10, 11, 72, 75, 90, 94, 114, 124
TCP/UDP/IP, 5, 10, 13, 75
t-distribution, 38
TDMA, ix, 45, 50, 75, 83, 85
Transaction, 14, 56, 58

W
WCET, ix, 26, 75
WWW, ix, 8, 75

X
Xerox, 6

80

A p p e n d i x e s

APPENDIX A

A.1 Network Definition Schema Documentation
For calculating the results of the analytical model, a small tool was developed. The most

arduous task of this tool is the handling of the network definitions. For this, the tool reads
XML files that define the topology of a network along with all the variables needed for the
calculations. The next sections document the XML schema for these files.

A.1.1 Element Network
diagram

namespace ethipnet-schema

children Nodes Transactions

attributes Name Type Use Default Fixed Annotation

name xs:string required

bps xs:long required

annotation documentation Network. Attributes: Network bitrate (bps)

83

Appendix A.

A.1.2 Element Network/Nodes
diagram

children EthIPNode switchNode

annotation documentation Group of nodes in the network: IOs, Controllers
(EthIPNodes) and Switches

A.1.3 Element Network/Nodes/EthIPNode
diagram

type ethips:TNode

children modules

84

 Glossary.

 85

attributes Name Type Use Default Fixed Annotation

nodeType ethips:TNodeType required

id xs:ID required

dea xs:double required

ts xs:double required

annotation documentation List of IOs and Controllers in the Network. Each node in the
network is composed by a list of modules. Every node is
assumed to have a ethernet adapter module, so it is not
included in this list. Attributes: Processing delay at the eth.
adapter, in ms (dea); Backplane TDMA slot (or frame) duration,
in ms (ts)

A.1.4 Element Network/Nodes/switchNode
diagram

type ethips:TSw

attributes Name Type Use Default Fixed Annotation

id xs:ID required

np xs:int required

dsl xs:double required

sif

xs:int required

annotation documentation List of Switches in the Network; Attributes: Number of ports (np);
Latency introduced by the switch, in ms (dsl); Size, in bytes, of the
Inter-frame space, to calcule the Inter-frame delay in function of
the bitrate (sif)

A.1.5 Element Network/Transactions
diagram

Appendix A.

children transaction

annotation documentation Group of transactions in the network

A.1.6 Element Network/Transactions/transaction
diagram

type extension of ethips:TTrans

children generator switch processor switch sink

attributes Name Type Use Default Fixed Annotation

tid xs:ID required

sm xs:int required

annotation documentation List of transactions in the network; Attributes: Size, in bytes, of
the associated message, used to calculate the time to transmit
the message in function of the bitrate (sm)

A.1.7 Complex Type TNode
diagram

86

 Glossary.

 87

namespace ethipnet-schema

children modules

used by element Network/Nodes/EthIPNode

attributes Name Type Use Default Fixed Annotation

nodeType ethips:TNodeType required

id xs:ID required

dea xs:double required

ts xs:double required

annotation documentation Each node in the network is composed by a list of modules.
Every node is assumed to have a ethernet adapter module, so
it is not included in this list. Attributes: Processing delay at the
eth. adapter, in ms (dea); Backplane TDMA slot (or frame)
duration, in ms (ts)

A.1.8 Element TNode/modules
diagram

children module

A.1.9 Element TNode/modules/module
diagram

attributes Name Type Use Default Fixed Annotation

mid xs:ID required

type ethips:TModuleType required

A.1.10 Complex Type TSw
diagram

namespace ethipnet-schema

used by element Network/Nodes/switchNode

Appendix A.

attributes Name Type Use Default Fixed Annotation

id xs:ID required

np xs:int required

dsl xs:double required

sif xs:int required

annotation documentation Attributes: Number of ports (np); Latency introduced by the
switch, in ms (dsl); Size, in bytes, of the Inter-frame space,
to calcule the Inter-frame delay in function of the bitrate (sif)

A.1.11 Complex Type TTrans
diagram

namespa

ce
ethipnet-schema

children generator switch processor switch sink

used by element Network/Transactions/transaction

attributes Name Type Use Default Fixed Annotation

tid xs:ID required

A.1.12 Element TTrans/generator
diagram

type ethips:TTransModule

attributes Name Type Use Default Fixed Annotation

mid xs:IDREF required

A.1.13 Element TTrans/switch
diagram

type ethips:TTransSw

88

 Glossary.

 89

attributes Name Type Use Default Fixed Annotation

id

xs:IDREF required

A.1.14 Element TTrans/processor
diagram

type extension of ethips:TTransModule

attributes Name Type Use Default Fixed Annotation

mid xs:IDREF required

rt xs:double required

annotation documentation Attributes: Response time of processing task, in ms (rt)

A.1.15 Element TTrans/switch
diagram

type ethips:TTransSw

attributes Name Type Use Default Fixed Annotation

id

xs:IDREF required

A.1.16 Element TTrans/sink
diagram

type ethips:TTransModule

attributes Name Type Use Default Fixed Annotation

mid xs:IDREF required

A.1.17 Complex Type TTransModule
diagram

namespace ethipnet-schema

used by elements TTrans/generator TTrans/processor TTrans/sink

attributes Name Type Use Default Fixed Annotation

mid xs:IDREF required

Appendix A.

A.1.18 Complex Type TTransSw
Diagram

namespace ethipnet-schema

used by elements TTrans/switch TTrans/switch

Attributes Name Type Use Default Fixed Annotation

id

xs:IDREF required

A.1.19 Simple Type TModuleType
namespace ethipnet-schema

Type restriction of xs:string

used by attribute TNode/modules/module/@type

Facets enumeration Input

enumeration Output

enumeration Controller

A.1.20 Simple Type TNodeType
namespace ethipnet-schema

Type restriction of xs:string

used by attribute TNode/@nodeType

facets enumeration Ctrl

enumeration IO

90

APPENDIX B

B.1 Simulation Model Documentation
The documentation for the simulation model developed is presented next. The first three

sections document the NED modules developed: Simple Modules, Compound Modules and
Channels. Then the Messages defined are documented.

Finally, the subsequent sections document the several C++ classes implemented.

B.1.1 Simple Modules

B.1.1.1 Module Backplane
File: Backplane.ned
Module Name: Backplane
Abstract: Models an Ethernet/IP device backplane. in[i], out[i] gate pairs represent the
backplane interface of each module. The backplane is encharged of serving these queues,
simulating a time divison protocol. Insted of doing time divison, the backplane can just
insert a delay, in function of the number of connections to the backplane. For this, the
parameter “timeDivison” must be false. This is usefull for simulation performance reasons.
It inspects the connection id of each packet in order to make the the apropriate decisons
about where it should deliver the packets.
IMPORTANT: To improve simulation performance, it is possible to disable the backplane
time divison. To do this, set the parameter “timeDivison” to false.
To be able to make decisions where to deliver de received packets, it depends on the
connected modules having a CIPLayer (or CIPBridgeLayer), with one or more connected
IOConnection modules. It analyses the connected modules in order to know the produced
and consumed connections in each module.
In the case of a CIPBridgeLayer, the parameters “connectionIDProducedList” and
“connectionIDConsumedList” of the of the connected CIPBridgeLayer. These parameters
define which connections are bridged throught the CIPBridgeLayer. They are defined by a
string, with the several connection IDs separated by “:”.
NOTE: No fragmentation of the received CIP messages is made.
Author: Nuno Pereira
Environment: OMNet++ simple module
Revision History: Created Feb 2004.

91

Appendix B.

B.1.1.2 Used in compound modules:

EthIPController Module Name: EthIPController

EthIPIO Module Name: EthIPIO

B.1.1.3 Parameters:

Name Type Description

tTableTime numeric transmit table time

frameTime numeric frame transmit time

timeDivison bool defines if the backplane will really do time
divison;

B.1.1.4 Gates:

Name Direction Description

in [] input each in[k], out[k] pair represents a
backplane interface of a module

out [] output each in[k], out[k] pair represents a
backplane interface of a module

B.1.1.5 Module CIPBridgeLayer
File: CIPBridgeLayer.ned
Module Name: CIPBridgedLayer
Abstract: A CIPLayer that bridges between the backplane and the TCP/IP stack
Author: Nuno Pereira
Environment: OMNet++ simple module
Revision History: Created Feb 2004.

B.1.1.6 Used in compound modules:

EthIPAdapter Module Name: EthIPAdapter

B.1.1.7 Parameters:

Name Type Description

nodename string parameters

multicastGroupPrefix string

92

 Appendix B.

B.1.1.8 Gates:

Name Direction Description

from_bp [] input

from_ntw input

to_bp [] output

to_ntw output

B.1.1.9 Module CIPLayer
File: CIPLayer.ned
Module Name: CIPLayer
Abstract: A CIPLayer that encapsulates/decapsulates CIP data items into CIP transport
packets. Layers between IOProcessing and the backplane.
Author: Nuno Pereira
Environment: OMNet++ simple module
Revision History: Created Feb 2004.

B.1.1.10 Used in compound modules:

EthIPControllerModule Module Name: EthIPControllerModule

EthIPIOModule Module Name: EthIPIOModule

B.1.1.11 Parameters:

Name Type Description

nodename string parameters

B.1.1.12 Gates:

Name Direction Description

from_cipio [] input

from_bp input

to_cipio [] output

to_bp output

 93

Appendix B.

B.1.1.13 Module ControllerTask
File: ControllerTask.ned
Module Name: ControllerTask
Abstract: Models a controller Task. Receives a messages in the input gate and delivers them
in the corresponding output gate (output gate with the same index), after a defined task
response time
Author: Nuno Pereira
Environment: OMNet++ simple module
Revision History: Created Feb 2004.

B.1.1.14 Used in compound modules:

EthIPControllerModule Module Name: EthIPControllerModule

B.1.1.15 Parameters:

Name Type Description

nodename string

responseTime numeric

B.1.1.16 Gates:

Name Direction Description

in [] input

out [] output

B.1.1.17 Module IOConnection
File: IOConnection.ned
Module Name: IOConnection
Abstract: Layers between Input, Output or Controller modules and IOConnection. Either
acts like an input connection or output connection. But not both at the same time. Its
behaviour is defined by the in gate connected (from_cip = output; from_input = input)
When acting as an input connection it will generate a message at each RPI with the last data
item value received. As an output it will simply forward messages to the out gate.
Author: Nuno Pereira
Environment: OMNet++ simple module
Revision History: Created Feb 2004.

94

 Appendix B.

B.1.1.18 Used in compound modules:

EthIPControllerModule Module Name: EthIPControllerModule

EthIPIOModule Module Name: EthIPIOModule

B.1.1.19 Parameters:

Name Type Description

nodename string

connectionID numeric Used to construct the multicast group addr.;
should be unique, between 1-255

ASICDelay numeric Configurable ASIC delay

rpi numeric Requested Packet Interval for the input

B.1.1.20 Gates:

Name Direction Description

out output in an output this is used to send messages to
a controller

from_input input
input gate for an input module (cannot be
connected at the same time as from_cip
gate)

from_cip input
output gate for an output module (cannot be
connected at the same time as from_input
gate)

B.1.1.21 Module Input
File: Input.ned
C++ definition: click here
Module Name: Input
Abstract: Models an input data generator. Creates cip data Items to be send to lower
processing. Sets the timestamp of the messages, so the receiving output can calculate the
end-to-end response time.
Author: Nuno Pereira
Environment: OMNet++ simple module
Revision History: Created Feb 2004.

B.1.1.22 Used in compound modules:

EthIPIOModule Module Name: EthIPIOModule

 95

Appendix B.

B.1.1.23 Parameters:

Name Type Description

nodename string

period numeric Configurable period of data generation

filterDelay numeric
Configurable filter delay (IMPORTANT:
Must be less than the data generation
period)

hwDelay numeric Configurable hardware delay

dataLength numeric CIP class 0 or class 1 packet length

B.1.1.24 Gates:

Name Direction Description

out output

B.1.1.25 Module NetworkLayers
File: NetworkLayers.ned
Module Name: NetworkLayers
Abstract: NetworkLayers implement the TCP/IP Layer and Physical Layer functionalities.
Responsible for encapsulating/decapsulating CIP UDP transport packets to be sent to the
TCP/IP ethernet network.
Assumes that a “intelligent” switching device is interconnecting the nodes
Author: Nuno Pereira
Environment: OMNet++ simple module
Revision History: Created Feb 2004.

B.1.1.26 Used in compound modules:

EthIPAdapter Module Name: EthIPAdapter

B.1.1.27 Parameters:

Name Type Description

nodename string

ipAddress string

ipProcessingDelay numeric

96

 Appendix B.

macProcessingDelay numeric

B.1.1.28 Gates:

Name Direction Description

from_phy input

from_application input

to_phy output

to_application output

B.1.1.29 Module Output
File: Output.ned
Module Name: IOProcessing.ned
Abstract: Receives output data. Records statistics about the received data. Namely the end-
to-end response time.
Author: Nuno Pereira
Environment: OMNet++ simple module
Revision History: Created Feb 2004.

B.1.1.30 Used in compound modules:

EthIPIOModule Module Name: EthIPIOModule

B.1.1.31 Parameters:

Name Type Description

Nodename string

connectionID numeric

B.1.1.32 Gates:

Name Direction Description

In input

B.1.1.33 Module Switch
File: Switch.ned

 97

Appendix B.

Module Name: Switch
Abstract: This is a model of a switch for an Ehternet/IP network. It delivers a copy of the
received packets to all corresponding ports, where consumers of the connection are present.
To know where to deliver the packets, it uses parameters “connectionIDProducedList” and
“connectionIDConsumedList” of the connected modules.
Author: Nuno Pereira
Environment: OMNet++ compound module
Revision History: Created Feb 2004.

B.1.1.34 Used in compound modules:

EthIPNetwork1 Module Name: EthIPNetwork1

EthIPNetwork2 Module Name: EthIPNetwork1

B.1.1.35 Parameters:

Name Type Description

nodename string

switchDelay numeric

B.1.1.36 Gates:

Name Direction Description

in [] input

Out [] output

98

 Appendix B.

B.1.2 Compound Modules

B.1.2.1 Module EthIPAdapter
File: EthIPAdapter.ned
Module Name: EthIPAdapter
Abstract: Ethernet/IP Adapter. Bridges commnunications from the backplane to the ethernet
network. Has two communication interfaces: the backplane and full-duplex ethernet.
The parameters “connectionIDProducedList” and connectionIDConsumedList define which
connections are bridged throught the adapter:
- connectionIDProducedList: Connections comming from ethernet, passing throught this
adapter to the backplane - connectionIDConsumedList: Connections comming from the
backplane, passing throught this adapter to ethernet
They are defined by a string, with the several connection IDs separated by “:”.
Author: Nuno Pereira
Environment: OMNet++ compound module
Revision History: Created Feb 2004.

B.1.2.2 Contains the following modules:

CIPBridgeLayer Module Name: CIPBridgedLayer

NetworkLayers Module Name: NetworkLayers

B.1.2.3 Used in compound modules:

EthIPController Module Name: EthIPController

EthIPIO Module Name: EthIPIO

B.1.2.4 Parameters:

Name Type Description

 99

Appendix B.

nodename string

connectionIDProducedList string Bridged connections

connectionIDConsumedList string Connections comming from the backplane,
passing throught this CIPBridgeLayer

B.1.2.5 Gates:

Name Direction Description

from_backplane input

to_backplane output

from_eth input

to_eth output

B.1.2.6 Module EthIPController
File: EthIPController.ned
Module Name: EthIPController
Abstract: Model of an Ethernet/IP Controller Composed of one or more controller modules
(defined by parameter numControllerModules), one or more IO Modules (defined by
parameter numIOModules), a backplane and an EThernet/IP Adapter.
Author: Nuno Pereira
Environment: OMNet++ compound module
Revision History: Created Feb 2004.

B.1.2.7 Contains the following modules:

Backplane Module Name: Backplane

EthIPAdapter Module Name: EthIPAdapter

EthIPControllerModule Module Name: EthIPControllerModule

EthIPIOModule Module Name: EthIPIOModule

100

 Appendix B.

B.1.2.8 Used in compound modules:

EthIPNetwork1 Module Name: EthIPNetwork1

EthIPNetwork2 Module Name: EthIPNetwork1

B.1.2.9 Parameters:

Name Type Description

nodename string

numIOModules numeric modules configuration

numControllerModules numeric connections

connectionIDProducedList string

connectionIDConsumedList string

B.1.2.10 Gates:

Name Direction Description

in input

out output

B.1.2.11 Unassigned submodule parameters:

Name Type Description

ioModule[*].numInputs numeric i/o configuration

ioModule[*].numOutputs numeric

controllerModule[*].numInputs numeric i/o configuration

controllerModule[*].numOutputs numeric

controllerModule[*].controllerTask.responseTime numeric

B.1.2.12 Module EthIPControllerModule
File: EthIPControllerModule.ned
Module Name: EthIPControllerModule
Abstract: Model of an Ethernet/IP Controller This controller has one controller task that
consumes/produces all IOs of the controller module.
Author: Nuno Pereira

 101

Appendix B.

Environment: OMNet++ compound module
Revision History: Created Fev 2004.

B.1.2.13 Contains the following modules:

CIPLayer Module Name: CIPLayer

ControllerTask Module Name: ControllerTask

IOConnection Module Name: IOConnection

B.1.2.14 Used in compound modules:

EthIPController Module Name: EthIPController

B.1.2.15 Parameters:

Name Type Description

nodename string

numInputs numeric i/o configuration

numOutputs numeric

B.1.2.16 Gates:

Name Direction Description

in input

out output

B.1.2.17 Unassigned submodule parameters:

Name Type Description

102

 Appendix B.

controllerTask.responseTime numeric

B.1.2.18 Module EthIPIO
File: EthIPIO.ned
Module Name: EthIPIO
Abstract: Model of an Ethernet/IP IO Composed of one or more IO Modules (defined by
parameter numIOModules), a backplane and an EThernet/IP Adapter
Author: Nuno Pereira
Environment: OMNet++ compound module
Revision History: Created Feb 2004.

B.1.2.19 Contains the following modules:

Backplane Module Name: Backplane

EthIPAdapter Module Name: EthIPAdapter

EthIPIOModule Module Name: EthIPIOModule

B.1.2.20 Used in compound modules:

EthIPNetwork1 Module Name: EthIPNetwork1

EthIPNetwork2 Module Name: EthIPNetwork1

B.1.2.21 Parameters:

Name Type Description

nodename string

numIOModules numeric IO modules configuration

connectionIDProducedList string

connectionIDConsumedList string

 103

Appendix B.

B.1.2.22 Gates:

Name Direction Description

in input

out output

B.1.2.23 Unassigned submodule parameters:

Name Type Description

ioModule[*].numInputs numeric i/o configuration

ioModule[*].numOutputs numeric

B.1.2.24 Module EthIPIOModule
File: EthIPIOModule.ned
Module Name: EthIPIOModule
Abstract: Model of an Ethernet/IP IO module
Author: Nuno Pereira
Environment: OMNet++ compound module
Revision History: Created Fev 2003.

B.1.2.25 Contains the following modules:

CIPLayer Module Name: CIPLayer

IOConnection Module Name: IOConnection

Input Module Name: Input

Output Module Name: IOProcessing.ned

104

 Appendix B.

B.1.2.26 Used in compound modules:

EthIPController Module Name: EthIPController

EthIPIO Module Name: EthIPIO

B.1.2.27 Parameters:

Name Type Description

nodename string

numInputs numeric i/o configuration

numOutputs numeric

B.1.2.28 Gates:

Name Direction Description

In input

Out output

 105

Appendix B.

B.1.3 Channels

B.1.3.1 Channel ethernet
File: EthIPNetwork.ned
(no description)

B.1.3.2 Attributes:

Name Value Description

Delay normal(0.00015,0.00005)

Datarate 100*10^6

106

 Appendix B.

B.1.4 Messages

B.1.4.1 Message CIPDataItem
File: CIPUDPTransportPacket.msg
CIP Data Item definition
According to Ethernet/IP Specification: Connected Data Item: Type ID + Length + Data

B.1.4.2 Fields:

Name Type Description

headerSize int indicates the fixed header size = Type ID +
Length (bytes)

sequenceNumber unsigned long Sequence number in data item, in order for
the outputs to control the data received

dataLength unsigned int
Data Item - Connected Data Item: Type ID
+ Length + Data DataTypeID - Connected
Data Item

dataItem string Class 0 or class 1 packet; (Here, just a
string)

B.1.4.3 Message CIPUDPTransportPacket
File: CIPUDPTransportPacket.msg
CIP UDP Transport Packet definition
According to Ethernet/IP Specification: Common Packet Format = Item Count + Address
Item + Data Item

B.1.4.4 Fields:

Name Type Description

headerSize int indicates the fixed header size = Item Count
+ Address Item (bytes)

connectionID unsigned int

Common Packet Format: Item Count +
Address Item + Data Item ItemCount -
Number of items to follow AddressItem -
Sequenced Address Item: Type ID + Length
+ Data AddTypeID - Sequenced Address
Item AddLength Data - Sequenced Address
Item: Connection ID + Sequence Number

B.1.4.5 Message EthernetFrame
File: EthernetFrame.msg

 107

Appendix B.

Ethernet v.2.0 frame definition
Header=DADDR, SADDR,Len/Type (14 Bytes) + Data (46-1500 Bytes) + FCS (4 Bytes)

B.1.4.6 Fields:

Name Type Description

headerSize int indicates the fixed header size = Ethernet
Header

dAddr string Header (14 Bytes)

sAddr string (6 Bytes)

Type int

(2 Bytes) Len/Type: 0x0800 (IP Datagram);
0x0806 (ARP request/reply); 0x0835 (ARP
request/reply);
Data will be encapsulated in packet; (46-
1500 Bytes)

Fcs int Frame Check Sequence (CRC)

B.1.4.7 Message NetworkTransportPacket
File: NetworkTransportPacket.msg
Network Transport Packet definition

B.1.4.8 Fields:

Name Type Description

headerSize int indicates the fixed header size = UDP
Header + IP Header (bytes)

sourcePort unsigned int

destinationPort unsigned int

sourceAddress string

destinationAddress string

108

 Appendix B.

 109

Appendix B.

B.1.5 Class Documentation

B.1.5.1 Backplane Class Reference
Inheritance diagram for Backplane:

B.1.5.2 Public Member Functions
 Module_Class_Members (Backplane, cSimpleModule, 0) virtual void

initialize()

 Do initialization of class data members and any other initialization
procedure necessary.

virtual void handleMessage (cMessage *msg)
 Process messages received.
virtual void finish ()
 Saves summary results (if any).

B.1.5.3 Private Member Functions
void tokenize (const char *str, std::vector< double > &array)
 Tokenize string containing numbers separated by “:” into the array.

B.1.5.4 Private Attributes
cPar * tTableTime

 retrieved module parameter; Transmit table time, defines the “time
slot” length for serving connections

cPar * frameTime

 retrieved module parameter; Frame Time, is the delay introduced to
transmit a frame

bool timeDivison
 flag to define if is doing time divison
int servingInterfaceIndex
 index of the interface being served
int servingConnectionIndex
 index of the connection being served
int numQueuedMessages
 count for the number of queued messages

110

 Appendix B.

int numInterfaces
 number of interfaces connected to the backplane
int numProducedConnections
 total number of producing connections connected
BackplaneInterface * bpInterface

 array of interfaces of the backplane (one for each input/output gates
pair)

B.1.5.5 Detailed Description
Backplane simple module class definition.
Models an Ethernet/IP device backplane.
The backplane has a BackplaneInterface with several queues to store messages from each
connection of the modules connected to the backplane.
It inspects the connection id of each received packet in order to make the the apropriate
decisons about where it should queue the received packets .
At a defined transmit table interval, the various connection queues are served, emulating a
time divison protocol.
Insted of doing time divison, the backplane can just insert a delay, in function of the
number of connections to the backplane. For this, the parameter “timeDivison” must be
false. This is usefull for simulation performance reasons.
Warning:
To improve simulation performance, it is possible to disable the backplane time divison. To
do this, set the parameter “timeDivison” to false.
To be able to make decisions where to deliver de received packets, it depends on the
connected modules having a CIPLayer (or CIPBridgeLayer), with one or more connected
IOConnection modules. It analyses the connected modules in order to know the produced
and consumed connections in each module.
In the case of a CIPBridgeLayer, the parameters “connectionIDProducedList” and
“connectionIDConsumedList” of the of the connected CIPBridgeLayer. These parameters
define which connections are bridged throught the CIPBridgeLayer. They are defined by a
string, with the several connection IDs separated by “:”.
Attention:
No fragmentation of the received CIP messages is made.
Author:
Nuno Pereira
Date:
Fev 2004.

B.1.5.6 Member Function Documentation
voi Backplane::finishd () [virtual]

 111

Appendix B.

 Saves summary results (if any).

voi Backplane::handleMessaged (cMessage * msg) [virtual]

Process messages received.
The messages shall be processed according to the receiving gate. At reception of a
message from upper modules, the message is queue in an appropriate queue, related to the
originating connection id. At a defined transmit table interval, the various connection
queues are served, emulating a time divison protocol.
If time division is disabled (transmit table interval is zero), the messages received will be
imediately processed and sent to the apropriate output gates, after a defined delay.
Parameters:

ms g - cMessage* : Message received.

Backplane::Module_Class_Members (Backplane ,
 cSimpleModule ,
 0
)

 Do initialization of class data members and any other initialization procedure necessary.

void Backplane::tokenize (const char * str,
 std::vector< double > & array
) [private]

Tokenize string containing numbers separated by “:” into the array.
Parameters:

str - const char* : String to be parsed
array - std::vector<double>& : Object array to hold the resulting vector of

numbers
Returns:
The object array with the resulting vector of numbers

B.1.5.7 Member Data Documentation
BackplaneInterface* Backplane::bpInterface [private]
 array of interfaces of the backplane (one for each input/output gates pair)

cPar* Backplane::frameTime [private]
 retrieved module parameter; Frame Time, is the delay introduced to transmit a frame

112

 Appendix B.

int B ackplane::numInterfaces [private]

 number of interfaces connected to the backplane

int B ackplane::numProducedConnections [private]

 total number of producing connections connected

int B ackplane::numQueuedMessages [private]

 count for the number of queued messages

int B ackplane::servingConnectionIndex [private]

 index of the connection being served

int B ackplane::servingInterfaceIndex [private]

 index of the interface being served

boo l Backplane::timeDivison [private]

 flag to define if is doing time divison

cPar* Backplane::tTableTime [private]

 retrieved module parameter; Transmit table time, defines the “time slot” length for
serving connections

B.1.5.8 BackplaneInterface Class Reference

B.1.5.9 Public Member Functions
 BackplaneInterface ()
 ~BackplaneInterface ()

B.1.5.10 Public Attributes
InterfaceConnection * intConnection
 array of Interface Connections (one per producing connection)
int numProducedConnections
 number of connections delivered from this interface
int numConsumedConnections
 number of connections to be delivered to this interface
int numDeliverIndexes
 count of indexes of the out gates for packetes received in this

 113

Appendix B.

interface
int * producedConnections
 array if connectionIDs delivered from this interface
int * consumedConnections
 array if connectionIDs to be delivered to this interface

B.1.5.11 Detailed Description
BackplaneInterface class definition.
A “helper” class with a queue to store messages from each module connected. Stores
information about each module connected, in order to allow the backplane to make
decisions on where to deliver each packet
Author:
Nuno Pereira
Date:
Feb 2004.

B.1.5.12 Constructor & Destructor Documentation
BackplaneInterface::BackplaneInterface() [inline]
BackplaneInterface::~BackplaneInterface() [inline]

B.1.5.13 Member Data Documentation
int* BackplaneInterface::consumedConnections

 array if connectionIDs to be delivered to this interface

InterfaceConnection* BackplaneInterface::intConnection
 array of Interface Connections (one per producing connection)

int B ackplaneInterface::numConsumedConnections

 number of connections to be delivered to this interface

int B ackplaneInterface::numDeliverIndexes

 count of indexes of the out gates for packetes received in this interface

int B ackplaneInterface::numProducedConnections

 number of connections delivered from this interface

int* BackplaneInterface::producedConnections

114

 Appendix B.

 array if connectionIDs delivered from this interface

B.1.5.14 CIPBridgeLayer Class Reference
Inheritance diagram for CIPBridgeLayer:

B.1.5.15 Public Member Functions
 Module_Class_Members (CIPBridgeLayer, cSimpleModule, 0) virtual void

initialize()

 Do initialization of class data members and any other initialization procedure
necessary.

virtual void handleMessage (cMessage *msg)
 Process messages received.
virtual void finish ()
 Saves summary results (if any).

B.1.5.16 Private Member Functions
void processMsgFromBP (cMessage *)
 Process messages received from the backplane to be delivered to lower UDP.

B.1.5.17 Detailed Description
CIPBridgeLayer simple module class definition.
A CIPLayer that bridges between the backplane and the TCP/IP stack
Author:
Nuno Pereira
Date:
Feb 2004.

B.1.5.18 Member Function Documentation
voi CIPBridgeLayer::finishd () [virtual]

 Saves summary results (if any).

void CIPBridgeLayer::handleMessage(cMessage * msg) [virtual]

 115

Appendix B.

Process messages received.
The messages shall be processed according to the receiving gate.
Parameters:

ms g - cMessage* : Message received.

CIPBridgeLayer::Module_Class_Members(CIPBridgeLayer ,
 cSimpleModule ,
 0
)

 Do initialization of class data members and any other initialization procedure necessary.

voi CIPBridgeLayer::processMsgFromBPd (cMessage * msg) [private]

Process messages received from the backplane to be delivered to lower UDP.
Constructs a new TransportInterfacePacket and encapsulates the received
CIPUDPTransportPacket in it
Parameters:

ms g - cMessage* : Message of type CIPUDPTransportPacket.

B.1.5.19 CIPLayer Class Reference
Inheritance diagram for CIPLayer:

B.1.5.20 Public Member Functions
 Module_Class_Members (CIPLayer, cSimpleModule, 0) virtual void

initialize()

 Do initialization of class data members and any other initialization
procedure necessary.

virtual void handleMessage (cMessage *msg)
 Process messages received.
virtual void finish ()
 Saves summary results (if any).

B.1.5.21 Private Member Functions
void processMsgFromBP (cMessage *)

116

 Appendix B.

 Process messages received from the backplane.

B.1.5.22 Private Attributes
CIPConnTable connTable
 Connection table, to know where to deliver the received packets.

B.1.5.23 Detailed Description
CIPLayer simple module class definition.
A CIPLayer that encapsulates/decapsulates CIP data items into CIP transport packets.
Layers between IOProcessing and the backplane.
Author:
Nuno Pereira
Date:
Feb 2004.

B.1.5.24 Member Function Documentation
voi CIPLayer::finishd () [virtual]

 Saves summary results (if any).

voi CIPLayer::handleMessaged (cMessage * msg) [virtual]

Process messages received.
The messages shall be processed according to the receiving gate.
Parameters:

ms g - cMessage* : Message received.

CIPLayer::Module_Class_Members(CIPLayer ,
 cSimpleModule ,
 0
)

 Do initialization of class data members and any other initialization procedure necessary.

voi CIPLayer::processMsgFromBPd (cMessage * msg) [private]

Process messages received from the backplane.
Analyses received CIPUDPTransportPacket connection IDs and delivers them to the
correct gate
Parameters:

 117

Appendix B.

ms g - cMessage* : Message of type CIPUDPTransportPacket.

B.1.5.25 Member Data Documentation
CIPConnTable CIPLayer::connTable [private]
 Connection table, to know where to deliver the received packets.

B.1.5.26 ControllerTask Class Reference
Inheritance diagram for ControllerTask:

B.1.5.27 Public Member Functions
 Module_Class_Members (ControllerTask, cSimpleModule, 0) virtual void

initialize()

 Do initialization of class data members and any other initialization procedure
necessary.

virtual void handleMessage (cMessage *msg)
 Process messages received.
virtual void finish ()
 Saves summary results (if any).

B.1.5.28 Private Attributes
cPar * responseTime
 retrieved module parameter; Task response time

B.1.5.29 Detailed Description
ControllerTask.cpp ControllerTask simple module class definition.
Models a controller Task.
Receives a messages in the input gate and delivers them in the corresponding output gate
(output gate with the same index), after a defined task response time
Warning:
The number of inputs must be equal to the number of outputs. The correspondean between
the input connection and output connection is made by the index of the input and output
gates.
Author:

118

 Appendix B.

Nuno Pereira
Date:
Feb 2004.

B.1.5.30 Member Function Documentation
voi ControllerTask::finishd () [virtual]

 Saves summary results (if any).

voi ControllerTask::handleMessaged (cMessage * msg) [virtual]

Process messages received.
Decapsulates the data item from the received message and deliver the message, at the
output gate with the same index as the receiving input gate, after a defined task response
time.
Parameters:

ms g - cMessage* : Message received.

ControllerTask::Module_Class_Members (ControllerTask ,
 cSimpleModule ,
 0
)

 Do initialization of class data members and any other initialization procedure necessary.

B.1.5.31 Member Data Documentation
cPar* ControllerTask::responseTime [private]
 retrieved module parameter; Task response time

B.1.5.32 Input Class Reference
Inheritance diagram for Input:

B.1.5.33 Public Member Functions
 Module_Class_Members (Input, cSimpleModule, 0) virtual void initialize()
 Do initialization of class data members and any other initialization procedure

 119

Appendix B.

necessary.
virtual void handleMessage (cMessage *msg)
 Process messages received.
virtual void finish ()
 Saves summary results (if any).

B.1.5.34 Private Member Functions
void sendInput ()
 Generates and sends a data item.

B.1.5.35 Private Attributes
cPar * dataLength
 retrieved module parameter; Size of the generated data
cPar * period
 retrieved module parameter; Period of generation
cPar * filterDelay
 retrieved module parameter; User defined filter delay
cPar * hardwareDelay
 retrieved module parameter; Hardware Delay
unsigned long sequenceNumber
simtime_t nextGenTime
 Next data generation time.

B.1.5.36 Detailed Description
Input simple module class definition.

B.1.5.37 Member Function Documentation
voi Input::finishd () [virtual]

 Saves summary results (if any).

voi Input::handleMessaged (cMessage * msg) [virtual]

Process messages received.
This will be called only when receiving a generateNextInput message. Generates a data
item message and schedules next generation.
Parameters:

ms g - cMessage* : Message received.

120

 Appendix B.

Input::Module_Class_Members(Input ,
 cSimpleModule ,
 0
)

 Do initialization of class data members and any other initialization procedure necessary.

voi Input::sendInpud t() [private]

Generates and sends a data item.
The data item is sent after the defined filterDelay and hardwareDelay intervals. The
timestamp is set with current time, so the receiving output can calculate the end-to-end
response time of this message.

B.1.5.38 Member Data Documentation
cPar* Input::dataLength [private]
 retrieved module parameter; Size of the generated data

cPar* Input::filterDelay [private]
 retrieved module parameter; User defined filter delay

cPar* Input::hardwareDelay [private]
 retrieved module parameter; Hardware Delay

sim ime_t t Input::nextGenTime [private]

 Next data generation time.

cPar* Input::period [private]
 retrieved module parameter; Period of generation

uns gned long i Input::sequenceNumber [private]

B.1.5.39 InterfaceConnection Struct Reference

B.1.5.40 Public Attributes
int connectionID
cQueue queue
DeliverIndexList * deliverIndexList
DeliverIndexList * deliverIndexList

 121

Appendix B.

B.1.5.41 Detailed Description
Interface Connection structure.
holds a queue with information about the respective connection id and information about
the gates where to deliver the messages from this connection

B.1.5.42 Member Data Documentation
int In terfaceConnection::connectionID

DeliverIndexList* InterfaceConnection::deliverIndexList
DeliverIndexList* InterfaceConnection::deliverIndexList
cQueue InterfaceConnection::queue

B.1.5.43 IOConnection Class Reference
Inheritance diagram for IOConnection:

B.1.5.44 Public Member Functions
 Module_Class_Members (IOConnection, cSimpleModule, 0) virtual void

initialize()

 Do initialization of class data members and any other initialization
procedure necessary.

virtual void handleMessage (cMessage *msg)
 Process messages received.
virtual void finish ()
 Saves summary results (if any).

B.1.5.45 Private Member Functions
void sendInputData ()
 Constructs a message with the last data item received.

B.1.5.46 Private Attributes
cPar * rpi

 retrieved module parameter; defined RPI for the connection (only used for
input connections)

122

 Appendix B.

cPar * asicDelay
 retrieved module parameter; ASIC delay
bool inputModule
 internal, calculated variables
CIPDataItem * dataItem
 defines if io connection processing acts like input or output

B.1.5.47 Detailed Description
IOConnection simple module class definition.

B.1.5.48 Member Function Documentation
voi IOConnection::finishd () [virtual]

 Saves summary results (if any).

voi IOConnection::handleMessaged (cMessage * msg) [virtual]

Process messages received.
When acting as an input connection, at each RPI sends the last received input data item.
When it receives a data item from an input, discards the last and stores it. Acting as an
output, it will simply forward messages to the out gate.
Parameters:

ms g - cMessage* : Message received.

IOConnection::Module_Class_Members (IOConnection ,
 cSimpleModule ,
 0
)

 Do initialization of class data members and any other initialization procedure necessary.

voi IOConnection::sendInputDatad () [private]

Constructs a message with the last data item received.
Sends it after defined asic delay interval.

B.1.5.49 Member Data Documentation
cPar* IOConnection::asicDelay [private]
 retrieved module parameter; ASIC delay

 123

Appendix B.

CIPDataItem* IOConnection::dataItem [private]
 defines if io connection processing acts like input or output

boo l IOConnection::inputModule [private]

 internal, calculated variables

cPar* IOConnection::rpi [private]

 retrieved module parameter; defined RPI for the connection (only used for input
connections)

B.1.5.50 NetworkLayers Class Reference
Inheritance diagram for NetworkLayers:

B.1.5.51 Public Member Functions
 Module_Class_Members (NetworkLayers, cSimpleModule, 0)
virtual void initialize ()

Do initialization of class data members and any other initialization procedure
necessary.
D:\OMNeT++\models\EthernetIP\doc\sourcedoc\classNetworkLayers.html
- a1

virtual void handleMessage (cMessage *msg)
 Process messages received.

B.1.5.52 Private Member Functions
void processMessageFromPhy (cMessage *msg)
 process messages received physical interface/channel
void processMessageFromApp (cMessage *msg)
 process messages received from application layer

B.1.5.53 Private Attributes
cPar * ipProcessing
 retrived module parameter; IP Processing Delay
cPar * macProcessing
 retrived module parameter; MAC Processing Delay

124

 Appendix B.

char ipAddr [20]
 IP address.
char macAddr [20]
 ethernet MAC address

B.1.5.54 Detailed Description
NetworkLayers.cpp NetworkLayers simple module class definition.
NetworkLayers implement the TCP/IP Layer and Physical Layer functionalities.
Responsible for encapsulating/decapsulating CIP UDP transport packets to be sent to the
TCP/IP ethernet network.
Warning:
At reception from the ethernet network, assumes that a “intelligent” switching device is
interconnecting the nodes, therefore all messages received are passed up to application
layer.
Attention:
All ethernet addresses are constructed based on multicast like MAC address mapping
Author:
Nuno Pereira
Date:
Feb 2004.

B.1.5.55 Member Function Documentation
voi NetworkLayers::handleMessaged (cMessage * msg) [virtual]

Process messages received.
Verifies arrival gate of the messages, and acts accordinglly
Parameters:

ms g - cMessage* : Message received.

voi NetworkLayers::initialized () [virtual]

Do initialization of class data members and any other initialization procedure necessary.
retrive module parameters, by reference

NetworkLayers::Module_Class_Members (NetworkLayers ,
 cSimpleModule ,
 0
)

 125

Appendix B.

voi NetworkLayers::processMessageFromAppd (cMessage * msg) [private]
 process messages received from application layer

voi NetworkLayers::processMessageFromPhyd (cMessage * msg) [private]

process messages received physical interface/channel
Assumes that a “intelligent” switching device is interconnecting the nodes, therefore all
messages received are passed up to application layer.
Parameters:

ms g - cMessage* : Message received.

B.1.5.56 Member Data Documentation
char NetworkLayers::ipAddr[20] [private]
 IP address.

cPar* NetworkLayers::ipProcessing [private]
 retrived module parameter; IP Processing Delay

char NetworkLayers::macAddr[20] [private]
 ethernet MAC address

cPar* NetworkLayers::macProcessing [private]
 retrived module parameter; MAC Processing Delay

B.1.5.57 Output Class Reference
Inheritance diagram for Output:

B.1.5.58 Public Member Functions
 Module_Class_Members (Output, cSimpleModule, 0) virtual void initialize()

 Do initialization of class data members and any other initialization procedure
necessary.

virtual void handleMessage (cMessage *msg)

126

 Appendix B.

 Process messages received.
virtual void finish ()
 Saves summary results (if any).

B.1.5.59 Protected Attributes
unsigned long lastSequenceNumber
cStdDev endToEndRTimeStats

 last sequence number received data collected; End to End response time
standard deviation

cOutVector endToEndRTime
 data collected; End to End response vector

B.1.5.60 Detailed Description
Output.cpp Output simple module class definition.
Receives output data. Records statistics about the received data. Namely the end-to-end
response time.
Author:
Nuno Pereira
Date:
Feb 2004.

B.1.5.61 Member Function Documentation
voi Output::finishd () [virtual]

Saves summary results (if any).
Statistics of messages received.

voi Output::handleMessaged (cMessage * msg) [virtual]

Process messages received.
At each received message outputs a message and records appropriate statistics.
Parameters:

ms g - cMessage* : Message received.

Output::Module_Class_Members(Output ,
 cSimpleModule ,
 0
)

 127

Appendix B.

 Do initialization of class data members and any other initialization procedure necessary.

B.1.5.62 Member Data Documentation
cOutVector Output::endToEndRTime [protected]
 data collected; End to End response vector

cStdDev Output::endToEndRTimeStats [protected]

 last sequence number received data collected; End to End response time standard
deviation

uns gned long i Output::lastSequenceNumber [protected]

B.1.5.63 Switch Class Reference
Inheritance diagram for Switch:

B.1.5.64 Public Member Functions
 Module_Class_Members (Switch, cSimpleModule, 0) virtual void

initialize()

 Do initialization of class data members and any other initialization
procedure necessary.

virtual void handleMessage (cMessage *msg)
 Process messages received.
virtual void finish ()
 Saves summary results (if any).

B.1.5.65 Private Member Functions
void tokenize (const char *str, std::vector< double > &array)
 Tokenize string containing numbers separated by “:” into the array.

B.1.5.66 Private Attributes
cPar * wcDelay
 retrieved module parameter; Worst case delay, introduced by the switch

128

 Appendix B.

to each packet
D:\OMNeT++\models\EthernetIP\doc\sourcedoc\classSwitch.html
- r0

int numInterfaces
 number of interfaces connected to the switch
SwitchInterface * switchInterface
 array of interfaces of the switch (one for each input/output gates pair)

B.1.5.67 Detailed Description
Switch simple module class definition.
This is a model of a switch for an Ehternet/IP network.
It delivers a copy of the received packets to all corresponding ports, where consumers of
the connection are present.
To know where to deliver the packets, it uses parameters “connectionIDProducedList” and
“connectionIDConsumedList” of the connected modules.
Warning:
To be able to make decisions where to deliver the received packets, it depends on the
connected modules having parameters “connectionIDProducedList” and
“connectionIDConsumedList”. These parameters are defined by a string, with the several
connection IDs separated by “:”.

The connection IDs in the parameters are compared with the last byte in the mac
address. Therefore, this assumes a direct mapping of the connectionID to the last
byte in the ethernet address.

Attention:
Only supports multicast frames
Author:
Nuno Pereira
Date:
Fev 2004.

B.1.5.68 Member Function Documentation
voi Switch::finishd () [virtual]

 Saves summary results (if any).

voi Switch::handleMessaged (cMessage * msg) [virtual]

Process messages received.
The messages shall be processed according to the receiving gate. The messages received
will be processed and sent to the apropriate output gates, after a defined delay.
Parameters:

 129

Appendix B.

ms g - cMessage* : Message received.

Switch::Module_Class_Members(Switch ,
 cSimpleModule ,
 0
)

 Do initialization of class data members and any other initialization procedure necessary.

void Switch::tokenize (const char * str,
 std::vector< double > & array
) [private]

Tokenize string containing numbers separated by “:” into the array.
Parameters:

str - const char* : String to be parsed
array - std::vector<double>& : Object array to hold the resulting vector of

numbers
Returns:
The object array with the resulting vector of numbers

B.1.5.69 Member Data Documentation
int S witch::numInterfaces [private]

 number of interfaces connected to the switch

Sw chInterface* it Switch::switchInterface [private]

 array of interfaces of the switch (one for each input/output gates pair)

cPar* Switch::wcDelay [private]
 retrieved module parameter; Worst case delay, introduced by the switch to each packet

B.1.5.70 SwitchInterface Class Reference
SwitchInterface class definition. More...
List of all members.

130

 Appendix B.

B.1.5.71 Public Member Functions
 SwitchInterface ()
 ~SwitchInterface ()

B.1.5.72 Public Attributes
InterfaceConnection * intConnection
 array of Deliver Indexes (one per produced connection)
int numProducedConnections
 number of connections delivered from this interface
int numConsumedConnections
 number of connections to be delivered to this interface
int numDeliverIndexes

 count of indexes of the out gates for packetes received in this
interface

int * producedConnections
 array if connectionIDs delivered from this interface
int * consumedConnections
 array if connectionIDs to be delivered to this interface

B.1.5.73 Detailed Description
SwitchInterface class definition.
A “helper” class. Stores information about each module connected, in order to allow the
Switch to make decisions on where to deliver each packet
Author:
Nuno Pereira
Date:
Feb 2004.

B.1.5.74 Constructor & Destructor Documentation
SwitchInterface::SwitchInterface() [inline]
SwitchInterface::~SwitchInterface() [inline]

B.1.5.75 Member Data Documentation
int* SwitchInterface::consumedConnections

 131

Appendix B.

 array if connectionIDs to be delivered to this interface

InterfaceConnection* SwitchInterface::intConnection
 array of Deliver Indexes (one per produced connection)

int S witchInterface::numConsumedConnections

 number of connections to be delivered to this interface

int S witchInterface::numDeliverIndexes

 count of indexes of the out gates for packetes received in this interface

int S witchInterface::numProducedConnections

 number of connections delivered from this interface

int* SwitchInterface::producedConnections

 array if connectionIDs delivered from this interface

132

	Overview
	Introduction
	Research Context
	Hypothesis and Objectives
	Outline of the Dissertation
	Research Contributions

	Technological Context: Communication Infrastructure
	Introduction
	Ethernet Review
	Ethernet/IP (EIP)
	General Aspects
	CIP Messaging
	Producer/Distributor/Consumer Model
	Ethernet/IP Devices
	Defining an End-to-End Transaction
	Assumptions

	Summary

	Technological Context: Simulation Software
	Introduction
	Simulation Languages
	Network Simulation Packages
	A Few More Details on OMNeT++
	Summary

	Approaches for Timeliness Analysis
	Introduction
	Basic Concepts of Real-time Systems
	Characterisation of Tasks
	Scheduling Tasks in Real-time Systems
	Priority Assignment Schemes

	Analytical-Based Timing Analysis
	Utilisation-Based Tests
	Response Time Tests
	From Task to Message Schedulability Analysis
	Holistic� Approach

	Simulation-Based Timing Analysis
	Meaningful Results from Simulation Output Data
	Statistical Ground for the Analysis of Simulation Output Dat
	Non-Terminating Simulations
	Other Measures of Performance
	Probabilities and Quantiles

	Summary

	Worst-Case Based Analytical Model
	Introduction
	End-to-End Latency Formulation
	Latency Introduced by the EA (Qeam)
	Latency Introduced by the Backplane (Qbm)
	Latency Introduced by the Switch (Lisw)
	Numerical Example
	Summary

	Simulation Based Timing Analysis of EIP Networks
	Introduction
	The Remote IO Node
	The Controller Node
	The Switch Node
	Example Scenario
	Statistical Results of the Simulation

	Summary

	Conclusions and Future Work
	Summary and Conclusions
	Future Work
	Fine-tuning and Thorough Validation of the Models
	Development of a Wrapping Layer
	Introduction of Less Pessimistic Assumptions
	Different Measures of Performance in Simulation Studies
	Extreme Value Theory
	Average Maximums
	Rare Event Simulation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

