IPP HURRAY!

www.hurray.isep.ipp.pt

Technical Report

A Framework for the Development of
Parallel and Distributed Real-Time
Embedded Systems

Ricardo Garibay-Martinez
Luis Lino Ferreira
Luis Miguel Pinho

HURRAY-TR-120403
Version:
Date: 3/16/2012

Technical Report HURRAY-TR-120403 A Framework for the Development of Parallel and Distributed
Real-Time Embedded Systems

A Framework for the Development of Parallel and Distributed Real-Time
Embedded Systems

Ricardo Garibay-Martinez, Luis Lino Ferreira, Luis Miguel Pinho

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: rgmz@isep.ipp.pt, lIf@isep.ipp.pt, Imp@isep.ipp.pt
http://www.hurray.isep.ipp.pt

Abstract

Embedded real-time applications increasingly present high computation requirements, which need to be completed
within specific deadlines, but that present highly variable patterns, depending on the set of data available in a
determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher
processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for
its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall
system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to
distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to
develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing
Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing
model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

A Framework for the Development of Parallel and Distributed
Real-Time Embedded Systems

Ricardo Garibay-Martinez, Luis Lino Ferreira and Luis Miguel Pinho
CISTER/INESC-TEC, ISEP
Polytechnic Institute of Porto, Portugal

{rgmz, 1lf, Imp} @isep.ipp.pt

Abstract—Embedded real-time applications increasingly
present high computation requirements, which need to be
completed within specific deadlines. But, those applications
present highly variable patterns, depending on the data set in a
determined instant. The current trend to provide parallel
processing in the embedded domain allows providing higher
processing power; however, it does not address the variability
in the processing pattern. Dimensioning each device for its
worst-case scenario implies lower average utilization, and
increased available, but unusable, processing in the overall
system. A solution for this problem is to extend the parallel
execution of the applications, allowing networked nodes to
distribute the workload, on peak situations, to neighbour
nodes. In this context, this paper proposes a framework to
develop parallel and distributed real-time embedded
applications, transparently using OpenMP and Message
Passing Interface (MPI), within a programming model based
on OpenMP. The paper also devises an integrated timing
model, which enables the structured reasoning on the timing
behaviour of these hybrid architectures.

Keywords-real-time; parallel execution; distributed embedded
systems; hybrid programming model; OpenMP; MPIL.

L INTRODUCTION

Nowadays, real-time embedded systems are part of our
everyday life. These systems range from the traditional
areas of military and mission critical to, domestic and
entertainment applications. One of the main characteristics
of real-time applications is the need to perform
computations within deadlines, for which an extensive bulk
of work has been provided for several decades. However,
more and more, real-time applications are evolving to
become larger and more complex, generating larger and
more dynamic workloads which are not easy (or efficiently)
dealt with traditional approaches.

The use of parallel models can reduce the time required for
processing computational intensive applications, and it is
currently the general trend to increase processing in all
areas, and real-time systems are not an exception. Therefore,
the real-time community has been making a large effort to
extend real-time tools and methods to multi-cores, lately
considering the use of parallel models at the application
level [1-3].

Despite the fact that parallel processors can offer increased
processing capacity, dimensioning each computing system

for the maximum local worst-case scenario (the traditional
real-time systems model) does not deal efficiently with the
high variability of application loads, particularly in more
dynamic scenarios. Furthermore, in some embedded
applications, the use of powerful enough multi-core
processors, is prohibited due to energy, space or cost
constraints. Example of such type of applications are, for
instance, image processing for obstacle detection in
cooperating robots, where the computation requirements of
the detection algorithms are highly dependent on the robot’s
current velocity, surrounding scenario and obstacles [4-6].
Consequently, whenever it is possible to connect an
embedded system through a local network, it might be
possible to perform part of those computations, on
neighbouring nodes with available processing capabilities.
Frameworks are thus required which allow to dynamically
manage globally the resources of the system, allowing peak
situations to be distributed cooperatively by the nodes [7].
For this purpose, this paper proposes a framework, based on
the OpenMP programming model [8], transparently
integrating an underlying distribution framework using
Message Passing Interface (MPI) [9]. This hybrid
computation model allows program blocks to be
transparently distributed, to be executed in neighbour nodes.
This transformation must nevertheless be able to provide
real-time behaviour. Examples of such efforts are described
in [4, 10].

This model considers programs written using the fork/join
programming model, with extensions to support distribution
and real-time requirements. As with OpenMP, the compiler
can then generate the distributed code, to be executed in
neighbouring nodes, using the MPI library. If the neighbour
nodes support parallel computations, the offloaded
component might again be parallelized, using OpenMP.

The paper then puts forward a timing and execution model,
which is able to map the code structure of the applications
into the underlying parallel and distributed behaviour, which
is amenable to timing analysis.

The remainder of the paper is structured as follows. Section
II presents the motivation and related work, whilst Section
IIT overviews the OpenMP and MPI programming models.
Section IV then presents the general model for supporting
parallel/distributed execution using the hybrid
OpenMP/MPI model. The timing model for OpenMP/MPI

execution is then put forward in section V. Finally, in
Section VI we draw some conclusions and propose future
work.

II. MOTIVATION AND RELATED WORK

This work targets systems which include embedded
computing platforms (e.g. smartphones, small and medium
robots, home and factory automation devices, etc.), which
are network connected to cooperating neighbour nodes.
These platforms can include single or multi-core processors,
ranging from resource-scarce to more powerful nodes.

In particular, we have been considering collaborative
robotics applications, where dynamic workloads can be
parallelized and distributed over the different robots. For
instance, the authors of [5] propose an algorithm which can
be used for the real-time 3D map generation for robotic
applications, by applying parallel techniques to traditional
algorithms for solving the Simultaneous Localization and
Map Building (SLAM) problem.

Object recognition and tracking is also a computational
intensive problem, which cannot be solved on resource
scarce platforms in real-time. In [4] the authors propose the
use of code offloading techniques which also take into
account the tasks’ deadlines. Also, [10] presented an
adaptive offloading approach for soft real-time systems,
which is capable of monitoring the execution time of a
specific task, and offload it to other nodes when it predicts
that the local node will not be capable of guaranteeing the
task’s deadline in the future.

Another problem that requires real-time computations in
robotics and autonomous vehicles is the self-location
problem for large environments; to which the authors of [6]
propose a distributed and parallel processing technique,
based in the Monte Carlo Technique location algorithm
which is implemented in a combination of OpenMP and
MPL

The use of OpenMP and MPI has been considered also in
other application domains, particularly in the area of high
performance computing, for example [11]. These works
show the advantage of the combinations in relation to pure
message passing solutions, nevertheless they are only
focused on performance and not in the real-time behaviour.
Simultaneously, the real-time community has been
analyzing the timing behaviour of parallel and distributed
applications. In particular, in the last few years the real-time
schedulability theory has been extensively extended to
consider multi-core platforms [12]. But, only recently more
attention has been given to the case of multithreading
parallel task models. In [1], the authors introduced the
parallel synchronous task model, where every task in the
system is a sequence of serial and parallel segments.
Nevertheless, such a model is highly restrictive, and for
overcoming these limitations the authors of [2] have
introduced its generalization. Both works [1, 2] are based on
a method of imposing artificial deadlines to segments

belonging to a real-time task to derive new deadlines for the
task’s segments.

The work of [2] was then extended in [3] by modelling a
real-time task as Directed Acyclic Graph (DAG), where
vertices represent threads and edges represent possible
dependencies between threads.

The integration of distributed computations within real-time
applications also requires that the schedulability analysis is
extended to the network and the overall distributed
application. Network schedulability has been much harder
to achieve and depends heavily on the underlying
technology. Examples are [13], which provides the
foundations of soft real-time scheduling for IEEE 802.11
wireless networks, and [14], which addresses the same
problem, but for Ethernet switches. Integrating both network
and CPU scheduling can lead to even more complex
analysis (e.g. [15]), although the current evolution of multi-
core technologies to include on-chip networks will
eventually make indistinct the parallel and distributed
analysis.

Our work builds upon the base concepts of [2, 3] but it
differentiates in: 1) we propose a framework and
characterization of hybrid OpenMP/MPI programs,
considering the possibility of distributed computations and;
ii) we focus in the model that is able to map the behaviour
of OpenMP constructs (code blocks) and MPI constructs
(send/receive operations) into threads, enabling the timing
analysability of such kind of programs, instead of focusing
on the analysis itself.

III. OPENMP AND MPI PROGRAMMING MODELS

A. OpenMP Programming Model

The OpenMP API has been developed to provide portability
and a user-friendly environment for programming shared
memory multiprocessor machines [7]. The great success of
OpenMP as a programming model relies on the simplicity
of generating parallel programs. Furthermore, it is very
efficient for creating incremental parallelism from existing
sequential code.

OpenMP programs follow the fork-join paradigm. The
structure of a parallel OpenMP program contains: i) a
sequential part (e.g., some C/C++ variable initializations);
ii) some parallel constructs (e.g. parallel sections), that are
inserted in the code for realizing a parallel execution (fork)
and finally; iii) the set of generated threads are reduced (e.g.
the reduction clause) to generate the final result (join).

In this paper, we only analyse the most relevant OpenMP
constructs, which are sufficient for parallelizing the majority
of applications. Even more, one of the contributions in this
paper is to derive a generic real-time model for OpenMP
programs.

In OpenMP, the parallel construct defines a segment of the
code to be executed in parallel; this segment is known as
parallel region. The construct is defined by the #pragma
omp parallel directive (Figure 1). Whenever a thread

encounters a parallel construct, this thread becomes the
master thread and it creates a team of threads, which will
run the code inside that code segment.

. #pragma omp parallel sections num_threads(2) {
#pragma omp sectionf{
#pragma omp single

/*variable initialization*/;

#pragma omp sectionf{
function 1();

}

1
2
3
4.
5. }
6
7
8
9. }

Figure 1. Parallel sections and single construct example.

At the end of a parallel region there is an implicit
synchronization mechanism called a barrier (line 9, Figure
1). There is a possibility of using a nowait clause which
inhibits the barrier and allows continuing the execution, but
it is not considered in this paper. Each thread executes its
associated code and waits at the end barrier, when all
threads terminate only the master thread continues.

In order to provide the desired functionality to parallel
constructs, OpenMP provides a set of work-sharing
constructs. These constructs are in charge of distributing
computation among threads in OpenMP programs.

These work-sharing constructs can be complemented and/or
modified with a set of clauses to control the parallel
execution. Of particular importance in the context of this
work is the numthreads (n) clause, which is used to
specify the number of thread in which to split a parallel
region. The most relevant work-sharing constructs follow.
The amount of parallelism achieved by a sections construct
is a function of the number of threads and number of
individual parallel section clauses associated to it. Each
section is defined by the #pragma omp section
directive.

The single construct (#pragma omp single) specifies
that the associated structured code block is executed by only
one of the threads in the team (not necessarily the master
thread). The other threads in the team, wait at an implicit
barrier at the end of the single construct (line 5, Figure 1).
In a similar way the #pragma omp master directive
guarantees that only the master thread will execute a
specific code block. Figure 1 depicts a fragment of code
related to the use of parallel section and single
constructs.

The loop construct is signalled to the compiler through the
#pragma omp for directive and is used to divide the
for cycle iteration through several threads. This directive
has different behaviours depending on the scheduler type
selected, which is determined by internal OpenMP variables
or by the schedule (...) clause.

This directive might also be associated with a reduction
clause. Figure 2, depicts a fragment of code exemplifying
the parallel for construct in OpenMP. In this example
the for loop iterations are divided by three threads, each one

executing two iterations. OpenMP also provides
functionality for nested parallelism. Whenever a thread
encounters another parallel construct, it creates a new team
of threads and it becomes the new master thread of that
team. This allows exploiting extra parallelism in OpenMP
programs.

1. #pragma omp parallel for
num_threads (3) reduction (+:sum) {

2. for (i = 0; 1 < 6; 1i++)

3. loopCode () ;

4. }

5. }

Figure 2. Parallel for directive example.

B. MPI Programming model

The MPI specification has become a de facto standard for
developing parallel distributed programs using the message
passing paradigm [8], which, among other, can implement
the fork-join parallel programming model. Common fork-
join programs implemented in MPI have i) a serial
execution code segment (e.g., variables declaration and
initialization); ii) the MPI environment initialization (e.g., a
call to MPI_ Init (..)); iii) an explicit work splitting
algorithm, for the distribution of the workload among the
processing elements (the splitting algorithm is implemented
by the programmer); iv) transfer of data, using message
passing calls (e.g., calls to MPI_ Send(..),
MPI Recv (..)); V) an execution of the computations; vi) a
reduce of the partial results from remote nodes to obtain the
final one (e.g., a call to MPI_Reduce (...)); and vii) the
finalization of the execution (e.g., a call to
MPI Finalize(..)). A code fragment example is
presented in Figure 3.

A normal MPI program starts with a call to MPT_Init (..)
routine to initialize the MPI environment (line 3). This
creates a communicator, which groups a set of MPI
processes in a local or in different nodes. All MPI messages
must specify a communicator for interchange of messages
between the processes belonging to the same communicator.
MPI Comm_rank (..), returns the “rank” (the ID) of a
process within the associated communicator.

The real potential of MPI programs is realized by the
communication routines. These communication routines are
the ones that realize the real distribution of workload to
processes for realizing the parallel computations. MPI
communications can be Point-to-Point or Collective. The
most used MPI communication functions are
MPI Send(..) and MPI_Recv (..), where the first is a
non-blocking call and the second blocks until a message is
received.

Also, MPI implements reduce operations, in an analogous
way to OpenMP through the MPI Reduce (...) function.
One important difference between OpenMP and MPI is that
the last leaves all the burden of parallel coding on the
programmers hands, while the first supports increasing

parallelism at the cost allowing less flexibility. This is also
the reason why we choose a hybrid approach where the
programmers’ front-end is OpenMP .

1. /* Variables declaration*/
2. MPI_Init (..);

3. MPI_ Comm size(..);
4. MPI_Comm_ rank (..) ;
5. if (rank == 0) {
6. MPI_Send(..) ;

7. MPI Recv (..);

8.

9. if (rank !=0){

10. MPI_Recv(..);
11. /*Execution*/
12. MPI_Send(..) ;
13. MPI_Finalize() ;
14. }

Figure 3. MPI two-sided send/receive example.

IV. SUPPORTING PARALLEL/DISTRIBUTED EXECUTION
WITH OPENMP/MPI

Based on the OpenMP/MPI constructs we can now propose
a model for supporting parallel/distributed execution.

To reduce the complexity of writing parallel distributed
programs, in our framework a programmer only writes code
in OpenMP API with minor changes to the OpenMP
specification. These include the extension of existing
OpenMP constructs for enabling them to support workload
distribution (supported by MPI). Therefore, the MPI code is
not seen by the programmer (MPI code is implicitly called
by the OpenMP library), and the programmer only needs to
specify which OpenMP code blocks can be distributed using
the #pragma omp distributedParallel pragma,
specifying its deadline to execute that parallel code block.
This is illustrated in Figure 4, where we specify that the
for loop can be distributed among 3 threads, and the
computation must be completed within a deadline of 200
milliseconds.

In this case, the distributedParallel directive,
signals the compiler to enable the parallelization of some
iterations of the parallel for loop on distributed nodes. How
the decision of which chunks to distribute is taken, is out of
the scope of this paper, but we are currently working on
such algorithm for work-sharing distribution. It is also the
responsibility of the compiler to generate code that can be
dynamically or statically parallelized on the destination
node, again using OpenMP.

1. #pragma omp distributedParallel for
deadline (200) num_threads (3) {
for (i = 0; 1 < 4; i++)
loopCode () ;

Uk W N
—

Figure 4. Distributed parallel for example.

By dynamic we mean that our run-time decides the number
of threads to split the computation on the neighbour node(s),
according to the availability of resources. By static we mean

that it is the programmer who specifies the splitting
procedure. Consequently, for software written based on this
model, it presents an execution timeline similar to the one in
Figure 5, which is related to the code in Figure 4.

The horizontal lines are the threads and the vertical lines
represent forks and joins. In this case the parallel for
clause splits in three threads, two are executed on the local
node and another is, mainly, executed on a cooperative
node, hereafter we call such kind of execution as remote
execution. Furthermore, we also assume that it is possible to
split the remote execution in two threads.

Observing the timeline in Figure 5, we assume that two
threads 01,4, and oy,, execute locally one for loop
iteration each, the distributable thread o, 3 executes the
remaining two iterations. Thread oy,3 is hosted in a
neighbour node and further split into two threads, by adding
thread 07,4, each one of these threads is executing one
iteration of the for loop. Also, in Figure 5 it is considered
the inherent delay of transmitting and receiving code or
data, 7D, 3 and TD5 ;, respectively. We are also assuming
that it is the responsibility of the master thread to marshal
and send the data required for remote execution, and for
receiving data and unmarshalling it.

A full notation is introduced in Section V.

The generic operation of the local thread which controls the
remote execution (the master thread) is as follows: i) The
local thread must issue a MPI_Init () to initialize the
MPI environment; ii) it determines the data to be sent and
sends it using MPI_Send () ; iii) the data gets transmitted
through the network with a certain delay; iv) the data is
received on the other node and executed as an OpenMP
program; v) when the execution is finished, the results are
sent back to the local thread which should already be
waiting for the results, by calling MPI_Recv ().

We are also assuming that the neighbour node already has
the code to be executed. Therefore, we do not need to take
into account the costs of transmitting and installing the
code. Such operation can be executed during the system
setup phase.

In order to combine the functionalities of OpenMP and MPI
in a single program, both APIs need to reach certain
commitments to guarantee for the correct execution of
hybrid programs.

On the OpenMP side, it requires to guarantee, that if a single
thread is blocked by an operating systems call, all the other
threads can still be runnable. This is already supported by
the most recent OpenMP implementations [7].On the MPI
side, from the release of MPI-2 standard [8], the concept of
level of thread support has been defined. There are four
levels of support: 1) MPI_THREAD SINGLE, only one
thread exists in the application, 2)
MPI_ THREAD FUNNELED, multiple threads can exist but
only the master thread can make MPI calls, 3)
MPI THREAD SERIALIZED, multiple threads can exists,
each thread can make MPI calls as long as there is no other

thread realizing a call, and 4) MPI _THREAD MULTIPLE,
multiple threads can exist and they can make MPI calls at
any time.

Using MPI_THREAD SINGLE, would make it impossible
to split into several threads on the neighbor nodes, any one
of the other options allows the execution of such programs
according to what has been described. Also, MPI has certain
limitations for guaranteeing real-time communications. But
for overcoming such limitations the authors of [16]
introduced an extension for MPI Real-Time (MPI/RT), the
MPI/RT standard is based on channel reservation and fault
tolerant mechanisms to guarantee time properties.

This section provided an overview of the envisaged
programming and execution model, in the Section V we
expand and formalize the execution model.

| Parallel Region |

I 1
J*distributed J*distributed

MPI_Recvi_..); fork®/ join®/

MPI_Send...);

Distributed
Execution

o Al Yo
Core2 03,14 i

Network

MPI_Send(__; |‘TDL3 T

MPI_Recvi...);

a o 01,1, |
tol Corer | A1 1,11 bty
Execution |
-7 T P
Core 2 fHork*/f 1,1,2 | [Tjoin*®/

Figure 5. Timeline execution of tasks on a hybrid OpenMP/MPI program.

V. TIMING MODEL FOR HYBRID OPENMP/MPI
PROGRAMS

In this section we propose a timing model for hybrid
OpenMP/MPI programs. Some previous works have studied
a generalization of the fork-join model for real-time systems
in shared memory platforms [1-3]. But our work
differentiates from others in the sense that we present a
characterization of the timing execution for hybrid
OpenMP/MPI programs. Furthermore, we propose a model
that is able to map the behaviour of code blocks in hybrid
programs into threads, which enables the timing
analysability of OpenMP/MPI programs.

To model an hybrid OpenMP/MPI program we assume a set
T of n periodic tasks denoted by {4, ..., T,,}. More precisely,
each task 7;, i €[1,n] is a potentially parallel task,
composed of a set of n; segments. A segment is a set of
code blocks grouped inside a parallel region (i.e. an
OpenMP parallel region).

Each parallel segment 7; ;, i € [1,n], j € [1,n;] may further
be composed of [; ; potentially parallel code blocks (e.g. an
OpenMP section, the code inside a parallel for loop, etc.)
denoted by b;jx, i € [1,n],j€[1,n]k€[1,1;;], each
code block has a Worst Case Execution Time (WCET) of
C; j k- As an example simply consider as a code block, line 4
in Figure 4, consequently, due to the 4 iterations of the for
cycle, we get 4 different code blocks (assuming a chunk size
of 1), which can be executed in parallel.

Each segment can be executed by a set of nt;;threads
denoted as 0y ;, i € [1,n],j € [1,n;],k € [1,nt;;].

The distributed nature of the programming model being
proposed also assumes the existence of a set ¥ of nn
distributed nodes ¥, x € [1, nn].

A task t; can be executed in a single parallel node, if the
execution requirements (e. g. deadline) of T; can be met, on
the node (¥,) where it has been released. If T;
computational requirements exceed the capacity of a single
node ¥, then a subset S¥ S W of nodes can cooperate to
cope with the requirements of ;.

In this Section, we model the execution of hybrid
OpenMP/MPI programs, by reducing the code blocks DAG
into the corresponding threads DAG. The code blocks DAG
may include and model some inherent transmission delays
TD;; when a task T; has been sent from node '¥; to a node
W¥; for being remotely processed.

In Figure 5 we depict a possible execution of the code in
Figure 4 on two nodes, a local node with two cores and a
neighbour node, also with two cores. This figure depicts the
interaction between the OpenMP code and the MPI code
required for distribution.

The code blocks DAG can be mapped into a threads DAG,
whose scheduling analysis can be performed with any of the
currently available state-of-the-art scheduling tests for real-
time parallel systems, e.g. [3].

A. Timing behaviour of OpenMP programs

To correctly characterize the OpenMP time behaviour, it is
necessary to analyse the process involved in the
transformation from high level #pragma directives to
standard C/C++ code that is finally compiled by the C/C++
compiler. OpenMP is supported by several free and
commercial compilers [7], and the implementations between
them can vary. In here, we do not intent to address the
possible details and differences between OpenMP compiler
implementations. We rather prefer to present a general and
abstract model of this transformation.

The process of converting OpenMP constructs to
multithread code is known as lowering the code. This
lowered code, is the one that makes the calls to the OpenMP
run-time environment. OpenMP compilers make this
lowering process in two phases: i) the pre-lowering and ii)
lowering.

The pre-lowering phase is in charge of transforming
(simplifying) some OpenMP work-sharing constructs in
other equivalent ones, with the objective of facilitating later
processing.

This is the case of the sections construct and the
single construct. In particular, the sections construct
is converted into an equivalent for loop and each
section construct corresponds to one iteration in the loop.
After this transformation, each iteration is scheduled
according to the scheduler type in use, which can be defined
as static or dynamic. Also, the single construct is

transformed to a for loop with just one iteration. When a
parallel region uses the single construct then the
schedule clause is always defined as dynamic.

The lowering phase takes the pre-lowered code and actually
performs the transformation to C/C++ code. The lowering
step realizes a transformation known as outlining the code.
Outlining is the process of transforming lexically existing
code into a new procedure and then this new procedure is
passed as an argument to the runtime libraries of OpenMP.
OpenMP does this outlining process to code encountered
inside parallel regions. The outlining methods can vary
between compilers. But, for our purposes, it is important to
note that after this outlining phase the compiler calls the
OpenMP run-time which is in charge of mapping code to
threads. Therefore, the instructions that are scheduled and
processed are the lowered ones.

Then, after lowering the code, the final mapping from code
blocks to threads depends on the scheduler type that is used
do assign (map) code blocks to threads.

Whenever the schedule clause is defined as static, the
iterations are assigned in round-robin to threads. In our
model, the chunk size is the number of lowered iterations
inside a for loop. When the parameter chunk size is not
specified, the chunk size is approximately the same for all
threads; equal to the number of iterations divided by the
number of threads. However, regardless the chunk size,
equation (1) holds for mapping the number of lowered code
blocks b; j, inside a parallel region that are ready for
execution (without precedence constraint) into threads,
when the static scheduler type is use to schedule lowered
code:

npmax — lir]')
Lk Tlti’j

where nb;[%" is the maximum number of code blocks per

thread inside a parallel region. This is an upper bound on
the number of code blocks to be assigned to each thread.
Then, if we consider the maximum WCET execution time
of a code block b; j, denoted as C;}%*, we can derive an
upper bound for WCET C],’f‘j”; of a thread being executed in

parallel as:
max — ppMmax , ~max (2)

oije = ik *Lijk
In case the dynamic scheduler type is chosen, chunk
iterations are assigned to threads on request. In a similar
way as a work sharing pool. Whenever a thread finishes
processing a chunk, it requests another until no more chunks
are available. Therefore, the dynamic scheduler type can
potentially offer better performance, especially when the
execution times of the respective code blocks are not
uniformly distributed (irregular parallelism). However, the
upper bound derived in (2) is also an upper bound whenever
the dynamic scheduler type is used. For illustrating the
reasoning of this, let us suppose two threads g, 1 ; and 07 ,
to execute three code blocks by 11, by1, and by 53, with

execution times of C;;4,C; 1, +€and Cy 43 + 2 - &, where
€ represents a very small execution time quantity; that is, €
approaches zero. Let us suppose that code blocks by 14,
by,, are being executed by threads 0,1, and oy, ,
respectively. Then, g, ; ; ends its execution and request the
next code block b; 3, which is the one having the
maximum WCET C[}%". From (1) we know that each thread
has a maximum nb;’}" of two. Hence, we can see that in

this example C(’,’;‘f’; would not be bigger than 2 - C}%". Thus
we show that equation (2) also holds as an upper bound for
the dynamic scheduler.

OpenMP supports other scheduler types, such as guided,
runtime and other wvariations. But they are
implementation dependent and hence we do not consider
them in this work.

After the initialization of an OpenMP program, a task T; is
executed sequentially, and is only composed by the master
thread. Whenever it encounters a parallel region, the master
thread “forks” and creates a team of nt threads belonging to
task t;. The number of threads to be created, is explicitly
expressed by the num_threads (nt) clause.

An example of a typical OpenMP program is depicted in
Figure 2. In line number 1, a #pragma omp parallel
for directive is encountered, which also includes a
num_threads (3) clause and a reduction clause. In
this case, three threads are to share the iterations of a for
loop. Iterations in a parallel for loop are divided in chunks
that are assigned to threads in 0; j . In this specific example
the number of iterations to share is six, and then assuming
that the default scheduler kind is static, the threads o;
with k = 1,2, 3 share two chunks each in a round robin
manner. A possible timeline for the execution of Figure 2
code by three threads is shown in Figure 6. In this figure, we
can find three different code segments: T4, T,, T3, With its
code blocks. Code block by 1, corresponds to serial code
being executed prior to the parallel region, then code blocks
by 5 1-¢ represent the execution of the code in line 3, the
function loopcode (). Code block b, , 7, in segment T, ,
corresponds to the execution of the reduction clause.

B. Timing behaviour of MPI communications

In contrast to the use of threads in OpenMP, MPI uses
processes as execution units for implementing two-sided
communication. But for modelling purposes, we do not
distinguish between threads and processes, and therefore we
use the same notation.

Figure 3 depicts an extract of code showing a two-sided
communication example in MPI. The execution of the code
starts with the initialization of MPI variables and the setting
up the of MPI environment; this is done in lines 1-5. Then,
the master process 07,1 initiates a transmission when
calling to MPI_Send in line 7. A matching MPI_Recv is
posted by process gy 1, in line 10. During the transmission

there is a transmission delay that depends on the size of the
data to transfer and the network protocol.

In our proposed model, this communication is hidden from
programmers as explained in Section IV, but the timing
behaviour needs to be considered when designing hybrid
OpenMP/MPI programs with real-time requirements. By
observing the timeline shown in Figure 5, we can observe
that during the transmission of data, to be used by thread
01,13 there is a transmission delay that depends on the size
of the data to transfer and the network protocol. Then, we
say that two processes g1, and oy ;3 hosted in nodes ¥;
and ¥;, respectively, incur in a transmission delay J™D; ; for
i # j and zero otherwise.

It is important to note that this transmission delay is a
critical parameter on the ability of the proposed
programming model to be able to fulfil the task’s deadlines,
due to its possible high duration in relation to the execution
times on the other machines.

L, T12 13
I 1 1 1
Master thread 01,1,1 | biga ||l biza I bysg | |b13,7" b1J3J1|REdUCﬂ0n
#pragmaomp 01,12 | bm,g I bl,z,s End of the
Parallel for parallel for
num_threads(3) 0113 | b I b | L— /*join and
{} fHorksy L2E || “HE implicit
Parallel Region barrier*/

Figure 6. Timing threading execution of a parallel for in OpenMP.

C. Hybrid OpenMP/MPI model

In order to consider hybrid execution, we extend our
OpenMP model into a Directed Acyclic Graph (DAG) that
allows to fully model the workload. The goal is to provide a
DAG that can be handled by a real-time schedulability test
for global EDF or partitioned RM (after applying the
transformations presented in [1-3]). Since these
schedulability tests and their corresponding adaptations are
designed for identical multi-core platforms, distribution
needs to be integrated, handling transmission delays 7D ;
(with approaches such as [15]), which is outside of the
scope of this paper.

The execution time of a task t; and its decomposition in
threads due to parallelism can be represented by a DAG. A
DAG G(V,E) is able to capture the combination of
sequential and parallel code blocks in parallel/distributed
programs and the possible dependencies between them.
Also, it is able to capture possible nested parallelism. Our
hybrid model is based on two different graphs GCB(V,E)
and GT(V',E"), where the first represents the dependencies
between code blocks in a program, and the second
represents the mapping of such blocks to threads.

The graph GCB(V,E) represents the structure of the
program, with the code blocks that may be executed in
parallel, as well the code blocks that may be executed
serially.

| Parallel Region |

(CRRY.
R,

W Local
Execution

¥

Parallel/Distributed
Execution

TD;;

Figure 7. Code blocks DAG GCB(V, E), including comm. delays TD; ;.

This graph of execution is commonly provided by a
compiler, and it is known as the execution tree, in here we
provide a more general approach by using a DAG. The set
of vertices in V = {v,, ..., v}, represent the set of code
blocks b;j, , and the set of edges
E = {(vg,v1), ..., (Vk_1,Vx)) represent the dependencies
between them. If a vertex v; precedes v,, denoted by
V1 = V,, indicates that a vertex v; must complete execution,
before v, can start execution. The relation — indicates a
predecessor-to-successor relation.

The dependencies in an hybrid OpenMP/MPI program can
be imposed by implicit synchronization points (e.g.
single constructs, master constructs, etc.), explicit
barriers or memory synchronization (e.g. critical sections,
flush operations, etc.); just to mention some, which are
related to OpenMP. If there is no precedence relation
between nodes v; and v, we said that they are logically
parallel and then they may be executed in parallel.
Whenever a graph GCB(V,E) , considers transmission
delays due to remote execution, then these delays I'D; ; can
be considered as a precedence constraint and added to the
execution time of the predecessor node (Figure 7).

Then, given the graph GCB(V,E), to be able to apply a
scheduling algorithm we need to map this code blocks into
the graph of threads GT(V',E"). Where the set of vertices
V' = {},...,v} in GT(V',E"), represent the set of code
blocks b, and the set of edges
E" = ((vg,v1), ..., (Vk_1, V) represent the order of
execution of code blocks assigned to threads in g; j .

To obtain GT(V',E"), we need to traverse GCB(V,E) for
obtaining a tree that contains predecessor-to-successor
relations indicating which code blocks precedes another
when assigned to threads. Each branch in the tree
corresponds to the execution of successive code blocks in
one thread, that is GT (V', E") has exactly the same number
of branches an threads (executing in the program).

The traverse mechanism is the well known Breadth-First
Search (BSF) algorithm [17]. The BSF algorithm
systematically discovers every vertex that is reachable from
a source node s. The BSF algorithm has been designed to
find the shortest path in a non-weighted graph. However, we
are interested in a useful property of BSF, it expands the
frontier between discovered and non-discovered nodes
uniformly across the breadth. This means that all vertex at

distance k from s are discovered before discovering another
vertex from distance k + 1. This is particularly useful for
our purposes, because all discovered vertex may be
executed in parallel since they do not have precedence
constraints between them. In the BSF algorithm, the
discovered nodes that are reachable from s are maintained
in a queue before deciding to discover another level in the
DAG. This queue can be assigned to threads according to
the defined schedule type (static or dynamic) and
respecting the maximum blocks per thread specified in (1).
For example, let us assume the code blocks inside the
parallel region in the DAG GCB(V,E) as shown in Figure
7, also let us assume that we have four threads to assign the
code blocks. After applying BSF algorithm to GCB
according to a static schedule type we can obtain a DAG
GT(V',E") as shown in Figure 8 a). In Figure 8 b) we
present the same example but in this case considering that
we only have three threads.

Parallel Region

@ | Parallel Region |
| |

(a)

Figure 8. Thread Blocks DAG GT (V',E").

With this approach, application designers are able to
transform the applications structure into a model which can
be analyzed in terms of timing behaviour.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a framework for the development of
parallel and distributed embedded systems based on a
hybrid programming model. The proposed framework
considers a model where programs are written with
OpenMP, and where MPI is transparently called for the
underlying exchange of data. In this model some of the code
executes locally in a mono or multi-core CPU, whilst some
components execute distributed in neighbour nodes
(potentially again parallelized using OpenMP). We then
propose a technique which enables the timing
characterization of these applications, transforming the
program structure into the execution graph, such that
schedulability analysis can be performed.

We are currently focusing our work on finding work-
sharing algorithms that allow us to determine the most
useful way in which to distribute the load between local and
remote nodes, at the same time guaranteeing the timing
constrains of the applications.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for the helpful comments and
suggestions. This work was partially supported by National Funds through

FCT (Portuguese Foundation for Science and Technology), by ERDF
(European Regional Development Fund) through COMPETE (Operational
Programme 'Thematic Factors of Competitiveness'), within VipCore and
SENODs projects, ref. FCOMP-01-0124-FEDER-015006 and FCOMP-01-
0124-FEDER-012988, and by ESF (European Social Fund) through POPH
(Portuguese Human Potential Operational Program), under PhD grant
SFRH/BD/71562/2010.

REFERENCES

[11 K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in Proc. IEEE 31st Real-Time
Systems Symposium (RTSS 2010), 2010, pp. 259-268.

[2] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in Proc. of IEEE
32nd Real-Time Systems Symposium (RTSS 2011), November 2011.

[3] A. Saifullah, D. Ferry, K. Agrawal, C. Lu, and C. Gill. “Real-time
scheduling of parallel tasks under general DAG model,” online:
http://www.cse.wustl.edu/~saifullaha/BIB_Files/dag_parallel.pdf

[4] Y. Nimmagadda, K. Kumar, L. Yung-Hsiang, and C. S. G. Lee,
“Real-time moving object recognition and tracking using computation
offloading,” in Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2010), 2010, pp. 2449-2455.

[5]1 A, Nuechter, “Parallel and cached scan matching for robotic 3D
mapping,” in Journal of Computing and Information Technology -
Volume 17, Number 1, 2009, pp. 51-65.

[6] P.T. M. Saito, D. F. Wolf, B. A. Mendonga, K. R. L. J. C. Branco,
and R. J. Sabatine, “A parallel approach for mobile robotic self-
location,” in Proc. of Fourth International Conference on Computer
Sciences and Convergence Information Technology (ICCIT 2009),
2009, pp. 762-767.

[7] L. Nogueira and L. M. Pinho, "Time-bounded distributed QoS-aware
service configuration in heterogeneous cooperative environments", in
Journal of Parallel and Distributed Computing 69 (2009), pp. 491-
507.

[8] OpenMP Architecture Review Board, “OpenMP application program
interface V3.1 July 2011,” www.openmp.org/wp/openmp-
specifications/, last accessed April 2012.

[9] Message Passing Interface Forum, “MPI: A Message-Passing
Interface standard version 227 http://www.mpi-
forum.org/docs/docs.html, last accessed April 2012.

[10] L. L. Ferreira, G. Silva, L. M. Pinho, “Service offloading in adaptive
real-time systems,” in Proc. of IEEE 16th Conference on Emerging
Technologies & Factory Automation (ETFA 2011), 2011, pp. 1-6.

[11] E. Lusk and A. Chan, “Early experiments with the OpenMP/MPI
hybrid programming model,” in Proc. of the 4th international
conference on OpenMP in a new era of parallelism (IWOMP'08),
Rudolf Eigenmann and Bronis R. De Supinski (Eds.). Springer-
Verlag, Berlin, Heidelberg, 2008, pp. 36-47.

[12] R. L Davis and A. Bums, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comp. Surv., vol. 43, pp. 35:1-44.

[13] P. Serrano, A. Banchs, P. Patras, A. Azcorra, “Optimal configuration
of 802.11e EDCA for real-time and data traffic,” IEEE Trans. on
Vehicular Technology, vol.59, no.5, 2010, pp.2511-2528.

[14] J. Loeser and H. Haertig, “Low-latency hard real-time
communication over switched Ethernet,” in Proc. 16th Euromicro
Conference Real-Time Systems (ECRTS’04), 2004, pp. 13- 22, 30.

[15] J.C. Palencia and M. Gonzalez Harbour, “Offset-based response time
analysis of distributed systems scheduled under EDF”, Proc. of the
15th Euromicro Conference on Real-Time Systems, ECRTS, Porto,
Portugal, July, 2003, pp. 3-12.

[16] A. Kanevsky, A. Skjellum , A. Rounbehler, “MPI/RT - An emerging
standard for high-performance real-time systems”, in Proc. 31th
Hawaii International Conference on System Science, 1998, vol.3, pp.
157-166.

[17] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson..
Introduction to Algorithms (2nd ed.), 2001, McGraw-Hill.

