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Abstract

Designing cost-efficient multi-core real-time systems requires efficient techniques to allocate applications to cores
while satisfying their timing constraints. However, existing approaches typically allocate using a First-Fit algorithm,
which does not consider the execution time and potential parallelism of paths in the applications, resulting in over-
dimensioned systems.

This work addresses this problem by proposing a new heuristic algorithm, Critical-Path-First, for the allocation of
real-time streaming applications modeled as dataflow graphs on 2D mesh multi-core processors. The main criteria
of the algorithm is to allocate paths that have the highest impact on the execution time of the application first. It is
also able to exploit parallelism in the application by allocating parallel paths on different cores. Experimental
evaluation shows that the proposed heuristic improves the resource utilization by allocating up to 7% more
applications and it minimizes the average end-to-end worst-case response time of the allocated applications by up
to 31%.

© CISTER Research Unit 1
www.cister.isep.ipp.pt



Critical-Path-First Based Allocation of Real-Time Streaming
Applications on 2D Mesh-Type Multi-Cores

Hazem Ismail Abdel Aziz Ali

Luis Miguel Pinho

Benny Akesson

CISTER Research Centre/INESC-TEC  CISTER Research Centre/INESC-TEC  Eindhoven University of Technology

Polytechnic Institute of Porto, Portugal
Email: haali@isep.ipp.pt

Abstract—Designing cost-efficient multi-core real-time systems
requires efficient techniques to allocate applications to cores while
satisfying their timing constraints. However, existing approaches
typically allocate using a First-Fit algorithm, which does not
consider the execution time and potential parallelism of paths
in the applications, resulting in over-dimensioned systems.

This work addresses this problem by proposing a new
heuristic algorithm, Critical-Path-First, for the allocation of real-
time streaming applications modeled as dataflow graphs on 2D
mesh multi-core processors. The main criteria of the algorithm
is to allocate paths that have the highest impact on the execution
time of the application first. It is also able to exploit parallelism
in the application by allocating parallel paths on different
cores. Experimental evaluation shows that the proposed heuristic
improves the resource utilization by allocating up to 7% more
applications and it minimizes the average end-to-end worst-case
response time of the allocated applications by up to 31%.

I. INTRODUCTION

Multi-core architectures integrating several low perfor-
mance cores on a single chip became popular solutions for
high-complexity applications, instead of using a single core
with high performance. Many embedded systems incorporate
a multi-core processor to satisfy the increasing demands of its
applications, since the need for a high processing power at a
low power budget is a great concern for such systems [1].

A main category of embedded system applications is
streaming multimedia applications; which are becoming in-
creasingly important and widespread. Many streaming applica-
tions have high processing requirements and timing constraints
that must be satisfied, e.g., H.264 video decoders [1]. This
raises the need for a parallelization model for applications
to use massive computational power [2], which the dataflow
model of computation is able to achieve for streaming applica-
tions [3]. Furthermore, since these applications are basically a
series of transformations that are applied to a data stream, the
dataflow model is a natural paradigm for representing them
for concurrent implementation on multi-core processors [3].
A dataflow model is specified by a directed graph, where the
nodes are considered as functions and the connections between
the nodes, i.e. edges, as channels of data. There are many
examples of applications that adopt this model of computation,
such as MPEG reconfigurable video coding (RVC) [4] or
Adaptive Multi-Rate Wideband Speech Codec (AMR-WB) [5].

As dataflow models are represented by graphs, the problem
becomes how to allocate the graphs’ nodes on the cores to
obtain high performance, and, as tackled in this work, also to
address timing constraints. This allocation problem has previ-
ously been tackled in several works from a high-performance
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point-of-view [6]-[10]. However, these approaches do not
consider timing constraints and thus cannot be used for al-
location of real-time dataflow applications. Another allocation
approach uses First Fit (FF), which has been shown to behave
as well, and outperform others in some cases, in terms of
achieved throughput [11]. However, applying approaches based
on FF and that satisfy timing constraints [12] results in over-
dimensioned systems, as our experimental evaluation will
show.

Dataflow applications are mostly statically scheduled.
Static scheduling proved its success in systems that only run
dataflow applications. However, for systems that run mixed
real-time applications (dataflow and non-dataflow), an optimal
dynamic real-time scheduling algorithm, e.g. Earliest Deadline
First (EDF), will have a higher schedulability success rate than
static scheduling, and enables efficient analysis techniques for
such kind of systems.

Therefore, in this paper, we propose a new approach
called Critical-Path-First (CPF) for allocation of real-time
applications modeled as dataflow graphs on 2D mesh multi-
core processors. The new approach uses Partitioned EDF
(PEDF) for scheduling applications on the multi-core platform.
CPF is based on allocating first, for each application, the
paths with highest end-to-end execution time, maximizing
path parallelism when possible. This allows maximizing the
usage of the available resources and potentiates parallelism,
which yields average lower end-to-end response time of the
applications. CPF also has a tendency to order the allocation
of tasks from heaviest to lightest, which has been shown to
provide a better solution than FF [13]. We experimentally show
that CPF outperforms the FF allocation algorithm in terms
of number of allocated applications and average worst-case
response time of the allocated applications without negatively
impacting the run-time of the allocation algorithm.

The paper is organized as follows. Section II provides an
overview of related work. Afterwards, Section III explains
the main concepts necessary to understand the system model
and evaluation parameters. The CPF algorithm is detailed
in Section IV, while Section V provides the evaluation and
discussion of experimental results. Finally, we provide some
conclusions in Section VI

II. RELATED WORK

The problem of task allocation for dataflow applications
has been the subject of quite some previous research. The
approaches in [6]-[10] address the problem of task allocation
on multi-core platforms, taking into account the sizes of the



tasks, the communication between them and load balancing.
However, these approaches do not take timing constraints into
account, which is the main focus of this work.

Other approaches in [14]-[16] address the problem of task
allocation and scheduling of real-time streaming applications
on multi-core platforms, taking into account the throughput
and timing constraints with a main objective of minimizing
energy consumption. On the other hand, our main objective is
the efficient usage of system resources, maximizing the number
of allocated applications, which is a completely different
problem.

In [17], the author discusses a static algorithm for al-
locating and scheduling components of periodic tasks that
consist of subtasks (nodes, actors) with precedence constraints
across sites in distributed systems (equivalent to cores of
a multiprocessor). The algorithm consists of two parts; the
first part decides whether a group of communicating subtasks
of a task should be assigned to the same site as a cluster,
while the second part allocates the clusters of subtasks to
the sites in a system based on the ability to find a feasible
static non-preemptive schedule for the subtasks, as well as
the communication between them. Compared to our work, the
approach in [17] first clusters the tasks and then tries to find a
feasible schedule. In contrast, we use PEDF [18], a dynamic
preemptive scheduling algorithm. This enables us to verify
schedulability by simply checking the processor utilization
bound u < 1 while performing allocation, which reduces the
time to find a feasible schedule. Furthermore, although both
approaches have the goal of meeting the timing constraints
of the applications, we also aim for efficient usage of system
resources, maximizing the number of allocated applications,
and for improving responsiveness, minimizing the average end-
to-end worst-case response time of allocated applications.

In [19], the authors propose a similar approach as [17].
However, they do not allow subtasks (nodes) of a task (graph)
to execute on different sites (cores) and they use a branch and
bound (BB) search to find a feasible schedule, while in [17] it
is a heuristic search. However, our proposed algorithm detects
nodes that can run in parallel and allow them to run on other
cores to reduce application end-to-end worst-case response
time. Also, the simple processor utilization test, u < 1, for
schedulability is much faster and easier than the exhaustive
search of BB.

Stuijk et. al [20] presented a resource allocation strategy
that can allocate multiple SDF graphs onto a heterogeneous
multi-core platform with throughput guarantees to each indi-
vidual application. The proposed method can deal with cyclic
dependencies and multi-rate SDF graphs without the need
to convert them to Homogeneous SDF (HSDF) graphs. The
allocation strategy starts by binding actors of the SDF graph
to a core on the multi-core platform to satisfy the application
throughput constraint. This is done by first considering the
actors whose execution time have a large impact on the
application throughput. Then, a static order schedule for each
core containing actors of the SDF graph is computed. Finally,
time slices are allocated to cores based on a binary search
algorithm that satisfies the throughput constraint. In contrast,
we first consider allocation of actors in the critical path of the
application that have a large impact on the end-to-end worst-
case response time of the application, instead of individual
actors. Also, we use PEDF instead of static scheduling, which
has a higher schedulability and enables efficient timing anal-

ysis techniques for mixed real-time systems.

Another work in [21] proves the existence of a feasible
dynamic non-preemptive Rate Monotonic (RM) schedule for
dataflow applications modeled as SDF graphs and then pro-
poses an execution model for it. In [22], the authors provide
a throughput analysis for an embedded multi-core system that
executes a set of soft/hard real-time data stream applications,
modeled as SDF graphs, using TDMA as the scheduling
algorithm. Contrarily, our proposed work uses a dynamic pre-
emptive scheduling PEDF, which always allows full processor
utilization over RM or static scheduling, which implies a more
efficient exploitation of computational resources.

In [12], the authors provide an approach where actors
(nodes) of streaming applications are considered as implicit-
deadline periodic tasks. They provide results from real stream-
ing applications from the SDF® Benchmark [23], and also
use PEDF as the scheduling algorithm for periodic tasks
(nodes, actors). They use the FF algorithm for the allocation
of nodes on the cores, and show that in more than 80% of the
cases the throughput resulting from the approach is equal to
the maximum achievable throughput. This result is obtained
under the condition of deriving the number of processors
to guarantee the maximum (ideal) throughput. The authors
show that this throughput condition increases the number
of processors required for allocation, thus decreasing their
individual utilization. Contrarily, we propose the Critical-Path-
First (CPF) allocation heuristic, which maximizes the usage of
system resources and minimizes the average end-to-end worst-
case response time of applications.

III. BACKGROUND / PRELIMINARIES

In this section, we present an overview of the dataflow
model of computation considered in this work. This back-
ground is essential for the understanding of the system model
and proposed allocation algorithm. Furthermore, we also de-
scribe the metrics used in the evaluation of our approach.

A. Homogeneous SDF (HSDF)

The dataflow model of computation is widely used in
modeling and analyzing streaming, Digital Signal Processing
(DSP) and concurrent multimedia applications [24], [25]. Its
use has been increasingly considered for designing applications
for multi- and many-core processors [26]. Homogeneous Syn-
chronous Dataflow (HSDF) [3] is a special case of dataflow
graphs in which all rates (production and consumption) as-
sociated with actor (node) ports are equal to one. Therefore,
when each actor is fired once, the distribution of tokens on
all channels return to their initial state. This is referred to as a
complete cycle or graph iteration. Figure 1a shows an example
of an HSDF graph.

Dataflow graphs, e.g. SDF and Cyclo-Static Dataflow
(CSDF) are examples of expressive models that can be con-
verted to an equivalent HSDF graph by using a conversion
algorithm, such as the one presented in [25]. This also enables
these models to be used with our approach.

B. System Model

This work considers the allocation of applications onto a
multi-core processor with identical cores (tiles), interconnected
™

by a 2D mesh Network on Chip (NoC), such as TILE64
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Figure 1: HSDF graph example.

[27]. Each tile is a full-featured processor that includes a
nonblocking switch that connects the tile to the 2D mesh
network. We consider the cost of communication as a single
constant cost per hop, which is based on the assumption of
having an extremely low-latency, high-bandwidth channelized
NoC for streaming data. All cores share a single OS, but with
independent scheduling queues per core, since are tasks pre-
allocated to cores.

Formally, we consider a system S based on a two dimen-
sional mesh (2D Mesh) homogeneous symmetrical multi-core
platform, represented by the set M = {mq,ma,...,my},
where 7 is the number of cores. The 2D Mesh processor runs
a set of m periodic applications A = {41, Aa, ..., A,, }. Each
application A; is represented by a graph G; = (V;, E;), where
V' is the set of nodes and E the edges connecting them. Each
node in this graph is an actor and each edge is a communica-
tion channel. Each actor is considered as a periodic task that
may be preempted at any time. All actors are scheduled on
M using the PEDF scheduling algorithm. Although it is non-
optimal [28], it is still suitable as migration of tasks (nodes) is
not allowed. All graphs G are Directed Acyclic Graphs (DAG),
modelled using the HSDF model of computation. A periodic
task 7 € V is represented by the 3-tuple 7 = (C;, T;, D;),
where C; is the worst-case execution time, 7; is the period, D;

is the deadline of the task. The utilization of task 7; is denoted
by U; and is defined as U; = C;/T;, where U; € (0,1]. The
set of applications A running on the system S have throughput
requirements ¢ = {(1,¢ ..., (y} that each application must
fulfill. Therefore, in our case the period T4, of each application
A; is set to the inverse of its throughput requirement (;, and
the period T; of each task in an application A; is set to its
period, T; = T4,. This means that each actor in the HSDF
graph only fire once per iteration of the graph. We do not
consider a more complete model where 7; is augmented with
a start instant s; (an offset).

Note that approaches to enforce precedence constraints
between tasks in the DAG (e.g. offline specifying offsets,
adapting deadlines [29] or use of semaphores [30]) imply
that tasks have either a static or dynamic start instant (an
offset) after the start instant of the DAG. However, the exact
timing analysis and the associated feasibility tests for such
asynchronous task models are complex. We can simplify the
analysis by ignoring these offsets and analyze the system as
if all tasks are released at the same instant (s; = 0), which
is a worst-case assumption that gives a sufficient, although
pessimistic, analysis [31]. In our approach, a simple utilization-
based feasibility test is used for the decision to allocate DAG
paths to cores, thus low complexity is fundamental. Baruah
et al. [32] showed that, given an asynchronous periodic task
set (s;, Cy, Ty, D), if the corresponding synchronous task set
(C:,T;, D;) (obtained by considering all offsets s; = 0)
is feasible, then the asynchronous task set is feasible too.
Therefore, in this system S, a task set (nodes set) V' refers
to a synchronous set of implicit-deadline periodic tasks. As
a result, we refer to a task 7; with a tuple 7; = (C;,T;) by
omitting the implicit deadline D; and the start time s;.

In this paper, we propose an allocation algorithm for a
set of periodic applications A on a 2D Mesh homogeneous
symmetrical multiprocessor M with the goal of maximiz-
ing the usage of system resources (increasing the number
of allocated applications) using the highest critical-path-first
allocation criteria. Moreover, we minimize the average end-
to-end worst-case response time of the allocated applications
R%’ on the system S by enabling application-level parallelism.

C. Evaluation Metrics

Two metrics are used to evaluate our approach: 1) the
number of allocated applications N, and 2) the average
end-to-end worst-case response time gain of the applications
Ry’ ...- We also measured the total utilization of the multi-
core processor Uy, (the average of all core utilizations,
Um = >0 Un,/n, where U, is the utilization of core i),
and the run-time ¢, of the algorithm.

The R;“”gam represents the gain achieved by the average
end-to-end worst-case response time of the allocated
applications compared to FF. The average end-to-end
worst-case response time of allocated applications R9%’ is
calculated by computing the average of all applications
end-to-end worst-case response times [R4,. This means,
R% = Y "% Ra,/mq, where m, is the total number of
allocated applications on the multi-core processor. After the
calculation of R%’ for each allocation algorithm, the average
end-to-end worst-case response time gain of the applications
is Rav — Apr —Racpr

A

gain Rav

, where RY’
A FF FF

is the average



end-to-end worst-case response time of applications allocated
using FF and RY’ is the average end-to-end worst-case
response time of applications allocated using CPF.

The application end-to-end worst-case response time
R4, represents the end-to-end worst-case response time
of a graph iteration. In our case, R4 is the summation
of worst-case response times of all actors that affect the
execution of the most critical path in the application.
For example, assume a multi-core platform that have
two cores, and we would like to allocate the application
graph shown in Figure la on it. Suppose the application

actors  (ag, bo, b1, ba, co,¢1,c2,dg) have a period of
10 and utilizations (0.3,0.2,0.1,0.1,0.2,0.1,0.1,0.3),
respectively. The critical path of the application is

(ao,bo, co,dp). The allocation of these actors using FF
is {corey(ag, by, b1,ba, cp), corea(cy, ca,dg)}, which results
in RAFF = RAaO + RAbO + RACO + RAdO + RAbl +
Ra, + Ra,, + Ra,,. This is due to the critical path of
the application (aq, bo, co,dp) spans the two cores (actors
(ao,bo,co) are on core; and actor (dp) is on coresy).

However, a different allocation approach that exploits
parallelism inside the application allocates the graph
as  {corei(ag, by, co,dy),corea(by,ba,c1,c2)}, results in

Ra,,,.. =Ra, +Ra, +Ra, + Ra, , which is less than
other . fag Q JLeo 0 . . .
Ra,,. This is due to the critical path of the application is
allocated on a single core (corej). Therefore, an allocation
algorithm that uses parallelism inside application can minimize
the end-to-end worst-case response time of the application
and this reflects in the average end-to-end worst-case response
time gain of the applications R%i

gain

IV. ALLOCATION ALGORITHM

The algorithm presented in this section is intended for
the allocation of applications modeled as HSDF graphs onto
2D mesh multi-cores at design time. It consists of two main
phases. The first phase is finding all possible paths between
the actors of the applications on the system, inspired by the
algorithm in [33] for finding the K most critical paths (CP).
Contrarily to [34]-[36], which intend to develop faster methods
to find a single CP, we are concerned with finding all possible
paths in the application graphs, and ordering them in a non-
increasing order of delays (most CP first) for each application
alone, since the CP affect the worst-case response time of the
application. The second phase is to allocate the actors of the
graph on the cores of the mesh processor using the output
information of the previous phase to minimize the average
end-to-end worst-case response time of the applications R%’.
We proceed by discussing these two phases in more detail.

A. First phase: Finding all possible paths

In this phase, we calculate all paths for a given DAG in
non-increasing order of delays . This enhances the selectivity
of CPF over FF, since it gives higher priority to tasks in a high
CP than tasks in a less CP. So, there is an indirect ordering
of tasks in form of ordered paths (ordered sets of tasks), from
which CPF selects these paths and allocate in order on a task-
by-task basis in the second phase of the algorithm. This means
that CPF first allocates paths (task sets) that have highest
impact on the execution time of the application. This gives an
advantage to CPF over FF in the sense that it helps in allocating

Partial Path :
P, = (s =vo,v1,...,Vj)

PATHS | Dela
Extend Partial Path using \ y
Succ(vj) = (Vji:VjpsVjss---Vjy)
A
Resulted Paths :
P,'] = <S = v(),vl,...,vl,-,vl,'l>
P, ={(s=vo,Vi,...,vj,V},)
P,'] = <S:V0,V1,...,Vj,vj'[>

Figure 2: Path enumeration.

more applications. As noted in [13], a packing algorithm
performs worst when tasks with larger utilizations happen to
be packed last, because new cores will be needed before earlier
cores can be filled up. A better strategy is to order the tasks
from the heaviest to the lightest before allocation.

The first phase of the algorithm is divided into two stages:

1) Creation of source and sink actors : First we search the
graph G to find all actors with in-degree (out-degree) equal to
zero. Actors with zero in-degree (out-degree) are specified as
the starting-actors (ending-actors). A dummy source s (sink t)
actor that has a zero execution time is inserted at the beginning
(end) of the graph G, as shown in Figure 1b. These two actors
(s,t) are connected with dummy links to starting and ending
actors, respectively. By doing this conversion, all paths in G
have a uniform form as (s = v, v1,v2,...,Vn, Vint1) = 1),
where (v;,vi41)), vi € G, for 1 < i < n. A path
P = {vo,v1,...,v;-1),v;} is considered a full path iff
vg = s and v; = t. Otherwise, P is considered a partial path.
For example, path {s, ag, by, co, do, t} in the HSDF application
shown in Figure 1b is a full path, while path {s,ag, b2} is a
partial path. This step is very important to get a uniform path
in case of a DAG with multiple starting and/or ending actors.

2) Path enumeration : This is an iterative process where
all possible paths in the application DAG are generated. A
lookup table PATHS is generated to save all possible paths
and their delay values in a non-increasing order of delays.
The process starts by initializing the table with a few partial
paths. In this case, these initial partial paths are all single hop
paths generated by combining the start actor s and its list of
successor actors Succ(s). Then, the process picks up a partial
path P; = (s = vg,v1,...,v;) from PATHS[i], as shown in
Figure 2, and extends it to a full path. The extension process
starts by getting the Succ(vj) = (vj,,Vj,, Vjs, - - -, V5, ), Where
! is the number of actors in Succ(v;). Then, it extends
the partial path P; to its [ possible paths, P, = (s =
Vo, V1, -+, V5,05, ), Pi, = (8 = 00,v1,...,05,05,),..., 0, =
(s = vg,v1,...,vj,v;). It removes P; and inserts its [ possible
paths in the lookup table in a non-increasing order of delays.
The path enumeration process loops until all partial paths in
PATHS extended to full paths.

B. Second phase: Allocation of actors

The second phase of the approach is an algorithm that
allocates the graphs’ actors on the multi-core processor with a
main criteria of minimizing the average end-to-end worst-case
response time of the applications k%’ by enabling application-
level parallelism. The first phase creates PATHS for each ap-
plication A;, called PATHS,,. Al PATHS 4, are gathered
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to create the global lookup table of all the paths PAT H S,
which will be used as input by the second phase to allocate
the graph actors.

1) Definitions:

Independent / Dependent Path: A path P4, =
(vo,v1,v2,...,v;) of a certain application A; is said to be
independent iff all its actors are unallocated. If at least one
of P4, actors is already allocated, the path is considered
dependent.

Allocation Condition: This is the condition used for
checking the ability of the core to take a new actor. In this
algorithm, we use the utilization of the core U,,, to formulate
the allocation condition, based on the selection of PEDF as a
scheduling algorithm. The algorithm cannot add an extra actor
unless the summation of total utilization of the core U,,, and
the utilization of the actor u; to be allocated U,,, + u; < 1,
which is a very simple test that can even be done at run-time.

Core Selection: The selection process of a new core for
assigning actors is done by two different methods, as shown
in Figure 3, depending on the type of path to be allocated
(independent/dependent). For independent paths, the selection
is performed by spiral_move. As shown in Figure 3a, every

Algorithm 1: The Critical-Path-First (CPF) algorithm

PATHS 4,: Lookup table for all possible paths in
application A; ordered according to
criticality.

PATHS¢: Global lookup table for all PATHS 4, of

all applications on the system S.
Py, A path of application A; in PAT H S lookup
table, Pa, = (vo,v1, V2, ..., U;).
P% : Partial path of full path PA
LPf‘7 List of partial paths.

begin
n = spiral_move();
foreach P4, in PATHS: do
if P4, is Independent then
foreach v; in P4, do
while (all cores are not tested) and (v;
not allocated) do
if Uy, +uy; <1 then
| allocate vj on Core m,,.
else
| n = spiral_move();

if v; not allocated then
| unallocate Vv; € A; from M.

[«

Ise // Dependent Path Case
search for possible PA in Pya,.
classify found P} & add them to LPY .
foreach P in LPp do
if Head or Tail then
find the reference actor (Parent).
‘ allocate using find_nearest_core.
else if Middle then
calculate mid-point (core).
L allocate using find_nearest_core.

if (v; in P4 .) not allocated then
L unallocate Yv; € A; from M.

time the spiral_move function is called it returns the next core
in the spiral path. The spiral_move function is called when
the current core fails the allocation condition. The spiral path
for core selection is initialized only once at the beginning of
the allocation process and advances by one core each time
the allocation condition fails. For dependent paths, as they are
partially allocated, allocation of child (unallocated) actors is
done as near as possible to their parent (allocated) actors to
reduce communication cost. The function find_nearest_core
starts searching for a suitable core (a core that passes the
allocation condition) one hop away from the reference core
(defined in Section IV-B2), where the first core that passes the
allocation condition test is selected. If not possible, it searches
for a suitable core two hops away, and so on, until finding a
possible core. The search criteria starts by finding the nearest
core in this order: North, South, East and West. The first
core that the find_nearest_core function finds is returned for
allocation. Figure 3b shows the searching regions, classified
according to the distance from the reference core.
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2) Critical-Path-First (CPF) Algorithm:

The proposed approach, shown in Algorithm 1, picks a
path P4, in order of criticality from PAT HS¢. The selected
path Py, is checked whether it is independent or dependent.
Py, is always independent by definition if it is the most CP
in the application A;.

If the path P4, is independent, the algorithm allocates
its actors (vg,v1,v2,...,v;) onto the multi-core processor
M = {mi,ma,...,my,}. For each actor v;, the allocation
process checks the allocation condition for the current core. If
the condition is true, it assigns the actor v; to the current core.
Otherwise, the next core is selected using spiral_move and the
process is repeated again.

On the other hand, if path P4, is dependent, the algorithm
searches its partial paths Pg (unallocated path sections) and
classifies them into three classes: Head, Middle and Tail.
Figure 4 shows the three classes of partial paths. For each
partial path P , the algorithm determines a reference allocated
actor (parent) ‘and uses its core as a reference core in the
process of selecting the nearest possible core. This reference
actor (parent) is determined according to the Pf; class. In case
of Pp belng a Head, the reference actor is the successor of the
last actor in the partial path as shown in Figure 4a. In case of
a Tail, the reference actor is the last allocated actor before the
partial path, as shown in Figure 4b. In the case of a Middle,
the reference core is selected differently. The class middle
partial path is surrounded by two allocated actors (parents),
as shown in Figure 4c. The reference core is thus selected by
computing the middle core between the parents. The location
of the computed reference core is given to find_nearest_core
as an input to find the possible nearest core to allocate the
child actors.

The CPF approach uses two different techniques for al-
locating independent and dependent paths. This is because
independent paths can be allocated on any set of cores that
have enough capacity to accommodate the path. However,
unallocated parts (children) of a dependent path need to be
allocated near to their parents to decrease communication
between child and parent actors. The partial path classifica-
tion discovers potential parallelism in the application, since,
from the definition, the full path (containing the partial path)
shares some of its actors with another allocated path. This
feature is an advantage and this knowledge allows to allocate

Table I: Benchmarks used in evaluation

Application Name Ref
H.263 decoder

H.263 encoder

MP3 decoder (granule level)
MP3 decoder (block level)

(23]
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these parallel sections on different cores (if possible), thus,
enhancing the performance and reduce the end-to-end worst-
case response time of the application 12 4,. If the heuristic fails
in the allocation of any path Pj,,, the heuristic unallocates all
previously allocated actors of the application A;.

V. EVALUATION AND RESULTS

The proposed approach has been evaluated by implement-
ing an allocation tool and experimenting on a set of streaming
applications. These streaming applications are taken from the
SDF® Benchmark [23]. The objective of the implemented
heuristic is to allocate HSDF graphs onto a multi-core pro-
cessor with the aim of maximizing usage of system resources
by increasing the number of successfully allocated applications
N, and minimizing the average end-to-end worst-case response
time of allocated applications R%’ by exploiting application-
level parallelism.

A. Experimental Setup

The selected set of streaming applications, presented in
Table I, comprises HSDF DAG graphs. The allocation tool
instantiates randomized combinations of these applications to
create sets of 500 applications.

In this evaluation, five experiments have been carried out
in order to assess the suitability of the proposed approach
under different types of applications, since the applications in
Table I mainly consist of two types: high (u; > 0.7) and low
(u; < 0.3) total utilization. High utilization applications are
the MP3 decoder (granule level) and the MP3 decoder (block
level). Low utilization applications are the H.263 encoder and
the H.263 decoder. The five experiments use different weights
for the random generator to achieve a range of High/Low
applications: 100% High - 0% Low, 80% High - 20% Low,
60% High - 40% Low, 40% High - 60% Low and 20% High -
80% Low. Each experiment is performed 100 times (iterations)
with different random sets and in each iteration the allocation
tool generates a new set of 500 applications. For each iteration,
the tool tries to allocate as many applications as possible on
the multi-core platform using this approach. The same set of
randomly generated applications are also applied, in the same
order, as input to a FF allocation algorithm (implemented in
the same tool) for comparison of the two evaluation metrics,
previously described in Section III-C. FF is used since it has
been shown to outperform other bin-packing algorithms in
terms of achieved throughput, although with higher jitter [11].

The multi-core platform follows the model explained in
Section III-B. The size of the platform is an 8x8, 64 core 2D
mesh. It has been modeled as a two dimensional array, where
each element represents a core.

B. Experimental Results

The evaluation of this approach is based on comparing to
the results of the FF allocation algorithm with two metrics
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Table II: Summary of results

High%/1,0w% 100% /0%, 80%/20% 60%/40% 40%/60% 20%/80%
Mean of CPF | FF CPF | FF CPF FF CPF FF CPF FF
N 64.1 | 64.3 98.1 | 92.1 124.3 | 1179 173.6 | 168.8 || 300.1 | 294.9
t, (sec) 2.9 3.1 23 29 1.8 2.1 1.3 1.3 0.7 0.4
R‘”’gam 31.2% 24.4% 22.3% 14.1% 8.2%
(N, R ), previously discussed in Section III-C. be confirmed from Table II, since it shows that the R%’

J . .
The ‘results of the five experiments are summarized in

Table II and shown in Figure 5. Table II shows a comparison
between CPF and FF with respect to the mean of the two
metrics and the algorithm run-time ¢, after one hundred
iterations. These two metrics are: 1) the number of allocated
applications N and 2) the average end-to-end worst-case
response time gain of the applications R‘“’ .- Figure 5
shows the average end-to-end worst-case response time gain
of the applications R‘“’ _over one hundred iterations for
five input data sets 100% ngh 0% Low, 80% High - 20%
Low, 60% High - 40% Low, 40% High - 60% Low and
20% High - 80% Low. The results in Table II show that
CPF succeeds in using the resources efficiently by allocating
up to 7% more applications in the (80% High - 20% Low)
case. This is due to the selectivity nature of CPF that enables
the allocation of actors in paths that have higher impact
on end-to-end application execution time first, previously
discussed in Section IV-A. Also, Figure 5 shows that CPF
outperforms FF in R‘“’a_”, which means that the average
end-to-end worst-case response time of the applications that
uses CPF is lower than the others that use FF. This can

gain

reached a value up to 31.2% in the (100% High - 0% Low)
case. This is due to the main two features of CPF : 1) the
allocation of independent paths on different cores, and 2) the
method of allocating partial paths (Head, Tail, Middle) on
different cores than their parents. These two features enable
parallelism in each application and prevents (as much as
possible) less CPs from interfering with the highest CP in the
same application, which reflects in the end-to-end worst-case
response time of each application. In terms of run-time ¢,
both algorithms executes in a few seconds, showing that the
added complexity is negligible. Also, the utilization of the
multi-core platform for both algorithms is approximately 99%.

VI. CONCLUSIONS

In this paper, we propose to use a Critical-Path-First (CPF)
approach for the allocation of real-time streaming applica-
tions, modeled as dataflow graphs, on 2D mesh multi-core
processors. The main goal is to address timing constraints
and maximize the overall usage of the system resources by



allocating paths that have the highest impact on the end-
to-end execution time of the application first. Also, CPF is
able to minimize the average end-to-end worst-case response
time of the applications allocated on the system by enabling
application-level parallelism. The evaluation results demon-
strate that CPF allocates up to 7% more applications, and
minimizes the average end-to-end worst-case response time
of the allocated applications up to 31% over FF.
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