
Institute of Software Technology

Eliminating Data
Race Warnings
Using CSP

Martin Wittiger

Ada-Europe 2016

A program contains a data race if two concurrently running tasks access the same piece of

memory, one of those accesses is a write, and there is no synchronization that guarantees

the accesses are not simultaneous.

14-06-2016University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 2

Definition of Data Race

The Problem with Data Races

…

shared += 3;

…
T
a

s
k
 A

…

shared -= 1;

…

T
a

s
k
 B

A program contains a data race if two concurrently running tasks access the same piece of

memory, one of those accesses is a write, and there is no synchronization that guarantees

the accesses are not simultaneous

14-06-2016University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 3

Definition of Data Race

The Problem with Data Races

…
r = shared;
r += 3;
shared = r;
…

T
a

s
k
 A

…
r = shared;
r--;
shared = r;
…

T
a

s
k
 B

10

.

.

.

9? 12? 13?

• C programs that contain data races have undefined behaviour

• Most data races “occur” only under rare timing conditions

Scheduling is typically indeterministic: The erroneous behaviour may reveal itself in some

executions but not in all

• Data races cannot be found reliably by testing

• In many cases the erroneous behaviour is often not reproducible

• Data races are a safety nightmare for embedded systems where failure may lead to loss

of life

14-06-2016 4

Implications

The Problem with Data Races

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016

Step 1:
Static Data Race Analysis

14-06-2016University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 5

• Idea: Use conservative static analysis to find all possible data races

• Published by (amongst others) Vaziri et al. in 2006

• Shown to work on industry-sized systems

• Our analysis relies on control flow, pointer, lockset and escape analysis

(all of them sound in a concurrent setup)

• Input is C source code and configuration

• Output is a list of potential data race pairs, so-called data race warnings

• This list has to be assessed manually for it may (and in practice will) contain many false

positive warnings

Setup

Step 1: Static Data Race Analysis

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 6

…

shared += 3;

…

T
a

s
k
 A

When examining data race warnings, we look for reasons to exclude the data race

• Mutexes or Locks  typically not in embedded systems

• Interrupt disable/enable patterns  already taken into account by analysis

• System state or state-based synchronisation

14-06-2016University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 7

Manual Assessment of Data Race Warnings

Step 1: Static Data Race Analysis

…

shared -= 1;

…

T
a

s
k
 B

DRW

if (state == RUN) {
…
shared += 3;

…
} T

a
s
k
 A

if (state == SHUTDOWN) {
…
shared -= 1;

…
} T

a
s
k
 B

• Deciding whether the system state precludes data races is difficult

• When does the state change?

• Are we sure we are aware of all writes to the state variable?

But maybe, if we stick to a simple pattern that works…

14-06-2016 8

System State

Step 1: Static Data Race Analysis

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016

Step 2:
Static Data Race Analysis
with State Pattern Recognition

14-06-2016University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 9

• Idea: Write analysis code that recognizes a specific state machine pattern

• Published by Keul in 2011, others have implemented variations

• Clearly an improvement, reduces false positive warnings

14-06-2016 10

Concept

Step 2: Static Data Race Analysis with State Pattern Recognition

typedef enum {INIT, RUN, SHUTDOWN} sys_state;
volatile sys_state state = INIT;

if (state == INIT) {
// do something
…
state = RUN;

}

if (state == RUN) {
// do something
…

}

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016

• But: Though this reduces the number of false positive warnings on some systems, when

examining real systems the picture has not changed

• Slight variations mean the pattern is no longer recognized

• Consider:

• Macro-Constants or Integer-Literals used instead of enums

• Initialisation works slightly differently

• Additional reads on the state variable

• state variable has address taken

• “aborting” assignments to variables

• Big question: Does the pattern still work?

• In practice: Variations are often not slight, but “creative”

14-06-2016 11

The Problem Persists

Step 2: Static Data Race Analysis with State Pattern Recognition

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016

Final Solution:
Static Data Race Analysis
Using Refinement Checkers

14-06-2016University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 12

• Refinement checkers exist for CSP

• Communicating Sequential Processes

• Developed by Hoare

• Language to mathematically model concurrent processes

• Idea: Conservatively approximate system behaviour by projecting it on the effects on

some state variables, then ask the refinement checker to prove the infeasibility of a

specific data race situation

Concept

Final Solution: Static Data Race Analysis using Refinement Checkers

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 13

• To be suitable for synchronization, state variables have to behave in a sequentially

consistent manner and be atomic

• In short: We assume that this is the case when variables are declared as volatile int

• Technically not in line with C99 Standard

• Very reasonable assumption nonetheless

• (The listener is referred to the paper for more details.)

Requirements on State Variables

Final Solution: Static Data Race Analysis Using Refinement Checkers

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 14

In brevity, steps performed:

• Control flow/pointer analysis to establish CFG/Points-To-Sets

• Escape analysis/Data-Race Analysis to establish DRWs

• Constant Propagation/Folding and state variable suitability check

• Manually select one or more state variables to be used

• Then, automatically transform (project) system to CSP, pre-process CSP and run the

refinement checker

We use FDR2 (Oxford University/Formal Systems Ltd.)

Final Solution: Static Data Race Analysis Using Refinement Checkers

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 15

Illustrative Examples

Final Solution: Static Data Race Analysis Using Refinement Checkers

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 16

typedef enum {STARTUP, RUN, SHUTDOWN} State;
int x, y;
volatile State state;

void task_low (void) {
state = STARTUP;
x = 1;
state = RUN;
while (true)

if (state == RUN)
work ();

else
y++; }

void task_high (void) {
if (state != STARTUP)

x++;
if (state != SHUTDOWN)

y++;
if (IND)

state = SHUTDOWN;
}

The refinement checker refuses to eliminate the DRW!

Illustrative Examples

Final Solution: Static Data Race Analysis using Refinement Checkers

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 17

typedef enum {STARTUP, RUN, SHUTDOWN} State;
int x, y;
volatile State state;

void task_low (void) {
state = STARTUP;
x = 1;
state = RUN;
while (true)

if (state == RUN)
work ();

else
y++; }

void task_high (void) {
if (state != STARTUP)

x++;
if (state != SHUTDOWN)

y++;
if (IND)

state = SHUTDOWN;
}

The refinement checker does eliminate the DRW!

• Data race analysis only needs to be run once

• Analysis steps other than refinement checker per warning ~30 s runtime

• Highly parallelizable, analysing 40 warnings also takes ~30 s on multicore machine

• Slightly revised approach runs in ~1 s

• Rule of thumb for refinement checker:

If there is no result after 5 seconds, there is likely never going to be one.

• Has ruled out actual DRW on industry-sized systems

by recognizing an intricate and complicated state-based synchronization scheme

• But, deviating from simple patterns very often breaks synchronization properties

14-06-2016 18

Practicality

Final Solution: Static Data Race Analysis Using Refinement Checkers

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016

Future Work

14-06-2016University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 19

• Working on further automisation,

i. e. (heuristically) advising the user which state variables to pick/not to pick

• Improving speed, ratio of successful terminations on more state variables

• Interactive operation modes? Use results as visualisation?

14-06-2016 20

Future Work

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016

e-mail

phone +49 (0) 711 685-

fax +49 (0) 711 685-

University of Stuttgart

Questions?

Martin Wittiger

882-84

883-80

Institute of Software Technology

martin.wittiger@informatik.uni-stuttgart.de

Universitätsstr. 38, 70569 Stuttgart

Institute of Software Technology

