University of Stuttgart
Institute of Software Technology

Eliminating Data
Race Warnings

Using CSP

Martin Wittiger
Ada-Europe 2016




The Problem with Data Races
Definition of Data Race

A program contains a data race if two concurrently running tasks access the same piece of
memory, one of those accesses is a write, and there is no synchronization that guarantees
the accesses are not simultaneous.

shared += 3;

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 2



The Problem with Data Races
Definition of Data Race

A program contains a data race if two concurrently running tasks access the same piece of
memory, one of those accesses is a write, and there is no synchronization that guarantees
the accesses are not simultaneous

10
r = shared; r = shared;
r += 3; Poe=
shared = r; shared = r;
9? 127 13?

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 3



The Problem with Data Races
Implications

« C programs that contain data races have undefined behaviour

« Most data races “occur” only under rare timing conditions
Scheduling is typically indeterministic: The erroneous behaviour may reveal itself in some
executions but not in all

» Data races cannot be found reliably by testing

* In many cases the erroneous behaviour is often not reproducible

- Data races are a safety nightmare for embedded systems where failure may lead to loss
of life

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 4



Step 1.
Static Data Race Analysis



Step 1. Static Data Race Analysis
Setup

Idea: Use conservative static analysis to find all possible data races
» Published by (amongst others) Vaziri et al. in 2006

« Shown to work on industry-sized systems

Our analysis relies on control flow, pointer, lockset and escape analysis
(all of them sound in a concurrent setup)

Input is C source code and configuration

Output is a list of potential data race pairs, so-called data race warnings

This list has to be assessed manually for it may (and in practice will) contain many false
positive warnings

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 6



Step 1. Static Data Race Analysis
Manual Assessment of Data Race Warnings

When examining data race warnings, we look for reasons to exclude the data race
* Mutexes or Locks —> typically not in embedded systems
* Interrupt disable/enable patterns —> already taken into account by analysis

« System state or state-based synchronisation

if (state == RUN) { if (state == SHUTDOWN) {

shared += 3; DRW shared -= 1;

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 7



Step 1. Static Data Race Analysis
System State

- Deciding whether the system state precludes data races is difficult
* When does the state change?
» Are we sure we are aware of all writes to the state variable?

But maybe, if we stick to a simple pattern that works...

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 8



Step 2.
Static Data Race Analysis
with State Pattern Recognition



Step 2: Static Data Race Analysis with State Pattern Recognition
Concept

 |dea: Write analysis code that recognizes a specific state machine pattern
* Published by Keul in 2011, others have implemented variations

 Clearly an improvement, reduces false positive warnings

if (state == RUN) {

// do something

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016

14-06-2016

10



Step 2: Static Data Race Analysis with State Pattern Recognition
The Problem Persists

- But: Though this reduces the number of false positive warnings on some systems, when
examining real systems the picture has not changed

« Slight variations mean the pattern is no longer recognized

» Consider:
» Macro-Constants or Integer-Literals used instead of enums
« Initialisation works slightly differently
« Additional reads on the state variable
« state variable has address taken
» “aborting” assignments to variables

 Big question: Does the pattern still work?

* In practice: Variations are often not slight, but “creative”

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 11



Final Solution:
Static Data Race Analysis
Using Refinement Checkers



Final Solution: Static Data Race Analysis using Refinement Checkers
Concept

+ Refinement checkers exist for CSP
« Communicating Sequential Processes
» Developed by Hoare
« Language to mathematically model concurrent processes
* ldea: Conservatively approximate system behaviour by projecting it on the effects on

some state variables, then ask the refinement checker to prove the infeasibility of a
specific data race situation

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016

13



Final Solution: Static Data Race Analysis Using Refinement Checkers
Requirements on State Variables

 To be suitable for synchronization, state variables have to behave in a sequentially
consistent manner and be atomic

* In short: We assume that this is the case when variables are declared as volatile int
» Technically not in line with C99 Standard
* Very reasonable assumption nonetheless

* (The listener is referred to the paper for more details.)

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 14



Final Solution: Static Data Race Analysis Using Refinement Checkers

In brevity, steps performed:
 Control flow/pointer analysis to establish CFG/Points-To-Sets
» Escape analysis/Data-Race Analysis to establish DRWs

« Constant Propagation/Folding and state variable suitability check

« Manually select one or more state variables to be used

» Then, automatically transform (project) system to CSP, pre-process CSP and run the
refinement checker
We use FDR2 (Oxford University/Formal Systems Ltd.)

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 15



Final Solution: Static Data Race Analysis Using Refinement Checkers
lllustrative Examples

state_to_startup
state_to_shutdown
state_to_run

state_to_shutdown

The refinement checker refuses to eliminate the DRW!

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 16



Final Solution: Static Data Race Analysis using Refinement Checkers
lllustrative Examples

state_to_startup
state_to_shutdown
state_to_run

state_to_shutdown

The refinement checker does eliminate the DRW!

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 17



Final Solution: Static Data Race Analysis Using Refinement Checkers
Practicality

Data race analysis only needs to be run once

Analysis steps other than refinement checker per warning ~30 s runtime
« Highly parallelizable, analysing 40 warnings also takes ~30 s on multicore machine
« Slightly revised approach runsin~1s

Rule of thumb for refinement checker:
If there is no result after 5 seconds, there is likely never going to be one.

Has ruled out actual DRW on industry-sized systems
by recognizing an intricate and complicated state-based synchronization scheme

But, deviating from simple patterns very often breaks synchronization properties

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016

18



Future Work



Future Work

« Working on further automisation,
I. e. (heuristically) advising the user which state variables to pick/not to pick

* Improving speed, ratio of successful terminations on more state variables

* Interactive operation modes? Use results as visualisation?

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 20



Questions?

University of Stuttgart
Institute of Software Technology

Martin Wittiger

e-mail martin.wittiger@informatik.uni-stuttgart.de
phone +49 (0) 711 685-882-84
fax +49 (0) 711 685-883-80

University of Stuttgart
Institute of Software Technology

Universitatsstr. 38, 70569 Stuttgart



