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The Problem with Data Races
Definition of Data Race

A program contains a data race if two concurrently running tasks access the same piece of
memory, one of those accesses is a write, and there is no synchronization that guarantees
the accesses are not simultaneous.

shared += 3;

University of Stuttgart, Institute of Software Technology Martin Wittiger Ada-Europe 2016 14-06-2016 2



The Problem with Data Races
Definition of Data Race

A program contains a data race if two concurrently running tasks access the same piece of
memory, one of those accesses is a write, and there is no synchronization that guarantees
the accesses are not simultaneous

10
r = shared; r = shared;
r += 3; Poe=
shared = r; shared = r;
9? 127 13?
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The Problem with Data Races
Implications

« C programs that contain data races have undefined behaviour

« Most data races “occur” only under rare timing conditions
Scheduling is typically indeterministic: The erroneous behaviour may reveal itself in some
executions but not in all

» Data races cannot be found reliably by testing

* In many cases the erroneous behaviour is often not reproducible

- Data races are a safety nightmare for embedded systems where failure may lead to loss
of life
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Step 1.
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Step 1. Static Data Race Analysis
Setup

Idea: Use conservative static analysis to find all possible data races
» Published by (amongst others) Vaziri et al. in 2006

« Shown to work on industry-sized systems

Our analysis relies on control flow, pointer, lockset and escape analysis
(all of them sound in a concurrent setup)

Input is C source code and configuration

Output is a list of potential data race pairs, so-called data race warnings

This list has to be assessed manually for it may (and in practice will) contain many false
positive warnings
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Step 1. Static Data Race Analysis
Manual Assessment of Data Race Warnings

When examining data race warnings, we look for reasons to exclude the data race
* Mutexes or Locks —> typically not in embedded systems
* Interrupt disable/enable patterns —> already taken into account by analysis

« System state or state-based synchronisation

if (state == RUN) { if (state == SHUTDOWN) {

shared += 3; DRW shared -= 1;
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Step 1. Static Data Race Analysis
System State

- Deciding whether the system state precludes data races is difficult
* When does the state change?
» Are we sure we are aware of all writes to the state variable?

But maybe, if we stick to a simple pattern that works...
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Step 2.
Static Data Race Analysis
with State Pattern Recognition



Step 2: Static Data Race Analysis with State Pattern Recognition
Concept

 |dea: Write analysis code that recognizes a specific state machine pattern
* Published by Keul in 2011, others have implemented variations

 Clearly an improvement, reduces false positive warnings

if (state == RUN) {

// do something
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Step 2: Static Data Race Analysis with State Pattern Recognition
The Problem Persists

- But: Though this reduces the number of false positive warnings on some systems, when
examining real systems the picture has not changed

« Slight variations mean the pattern is no longer recognized

» Consider:
» Macro-Constants or Integer-Literals used instead of enums
« Initialisation works slightly differently
« Additional reads on the state variable
« state variable has address taken
» “aborting” assignments to variables

 Big question: Does the pattern still work?

* In practice: Variations are often not slight, but “creative”
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Final Solution:
Static Data Race Analysis
Using Refinement Checkers



Final Solution: Static Data Race Analysis using Refinement Checkers
Concept

+ Refinement checkers exist for CSP
« Communicating Sequential Processes
» Developed by Hoare
« Language to mathematically model concurrent processes
* ldea: Conservatively approximate system behaviour by projecting it on the effects on

some state variables, then ask the refinement checker to prove the infeasibility of a
specific data race situation
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Final Solution: Static Data Race Analysis Using Refinement Checkers
Requirements on State Variables

 To be suitable for synchronization, state variables have to behave in a sequentially
consistent manner and be atomic

* In short: We assume that this is the case when variables are declared as volatile int
» Technically not in line with C99 Standard
* Very reasonable assumption nonetheless

* (The listener is referred to the paper for more details.)
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Final Solution: Static Data Race Analysis Using Refinement Checkers

In brevity, steps performed:
 Control flow/pointer analysis to establish CFG/Points-To-Sets
» Escape analysis/Data-Race Analysis to establish DRWs

« Constant Propagation/Folding and state variable suitability check

« Manually select one or more state variables to be used

» Then, automatically transform (project) system to CSP, pre-process CSP and run the
refinement checker
We use FDR2 (Oxford University/Formal Systems Ltd.)
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Final Solution: Static Data Race Analysis Using Refinement Checkers
lllustrative Examples

state_to_startup
state_to_shutdown
state_to_run

state_to_shutdown

The refinement checker refuses to eliminate the DRW!
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Final Solution: Static Data Race Analysis using Refinement Checkers
lllustrative Examples

state_to_startup
state_to_shutdown
state_to_run

state_to_shutdown

The refinement checker does eliminate the DRW!
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Final Solution: Static Data Race Analysis Using Refinement Checkers
Practicality

Data race analysis only needs to be run once

Analysis steps other than refinement checker per warning ~30 s runtime
« Highly parallelizable, analysing 40 warnings also takes ~30 s on multicore machine
« Slightly revised approach runsin~1s

Rule of thumb for refinement checker:
If there is no result after 5 seconds, there is likely never going to be one.

Has ruled out actual DRW on industry-sized systems
by recognizing an intricate and complicated state-based synchronization scheme

But, deviating from simple patterns very often breaks synchronization properties
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Future Work

« Working on further automisation,
I. e. (heuristically) advising the user which state variables to pick/not to pick

* Improving speed, ratio of successful terminations on more state variables

* Interactive operation modes? Use results as visualisation?
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