
Library Oriented Approaches for
Parallel Loop Constructs

Outline
● Parallelism Intro

 Loops and Blocks

 The Challenge of Loop Reduction

● Paraffin

 Design

 Capabilities

 Examples

● Syntax Helpers?

− Goal: Integrate with libraries

− What can be done?

Where Ada stands to shine

● Ada's focus on correctness

● Static checking

− Let compiler find problems when possible

− Catch bugs earlier in development.

● Parallel Programming is difficult to get right.

− Let Ada compiler help programmer out as much as
possible.

● Ideally Ada would prevent data races

− Other languages let programmers shoot themselves
in the foot more readily.

Parallelism Constructs

● Basically two constructs needed

− Parallel Blocks

● Forking two or more actions in parallel.

− Parallel Loops

● Simple Iteration loops

● Reduction loops

● Container Iteration

Parallel Blocks

● When Two or more lengthy actions can execute
at the same time.

Paint_Sistine_Chapel; -- 1502 - 1512

Paint_Mona_Lisa; -- 1503 - 1506

● Doesn't work so well with just one worker

− But with two or more workers, works great!

● Same goes for;

Build_Rome; -- Took longer than a day

− A classic Divide and Conquer problem

Parallel Blocks
Works well with Recursion

● Leonardo Bonacci (c. 1170 – c. 1250)

− Known also as Leonardo of Pisa

− You might know him by his other name;

● Leonardo Fibonacci

−popularized the Hindu–Arabic numeral
system

−Wrote Liber Abaci in 1202

● A historic book on Arithmetic

● Among many other things, introduced
the Fibonacci sequence

Recursive Parallel Fibonacci

Fn = Fn-1 + Fn-2 {0,1,1,2,3,5,8,13,21,34,55,89,...}

function Fibonacci (N : Natural) return

Natural is

begin

if N < 2 then

return N;

end if;

return Fibonacci (N - 2) +

Fibonacci (N - 1);

end Fibonacci;

Opportunity for Divide &
Conquer

Rework for Parallelism
function Fibonacci (N : Natural) return Natural

is

Left, Right : Natural;

begin

if N < 2 then

return N;

end if;

parallel

Left := Fibonacci (N – 2);

and

Right := Fibonacci (N – 1);

end parallel;

return Left + Right;

end Fibonacci;

Calculation of Left
& Right
occur in parallel

Synchronization occurs
here

Parallel Loops

● Same action occurring multiple times

Italian Music Term: Da Capo (D.C.)
Nested Loop
Middle Bar plays
twice

Italian goto
statement

for Verse in 1 .. 2 loop

Play (Bar1, G1, 4s); Play (Bar2, A2, 4s);

if Verse = 1 then

for Repeat in 1 .. 2 loop

Play (Bar3, B2, 4s);

end loop;

Play (Bar4, C2, 4s);

end if;

end loop;

Play (Bar5, C1, 6s);

Make this a parallel
loop
(We might get Jazz!)

Go back to the
Beginning

Biggest challenge for parallelism
syntax

● Loop Reductions (by far)

− Combining parallel results into a single overall
result

Sum := 0;

for I in 1 .. N loop

Sum := Sum + I;

end loop;

Global result,
need to avoid data
races

Need to be able to run this loop in parallel,
But how?

Benefits of Syntax

● Can be tailored to “suit” a particular problem

 Has to “fit” in the language, however

● Compiler can have more intimate knowledge

− eg. Detect data races

● Can be easier to read and write

● Examples of syntactic solution

− OpenMP (C, C++, FORTRAN)

− Cilk (C, C++)

Other side of Syntax

● Adds complexity to language definition

● More work for compiler writers

● Danger of unseen problems, or regrets

− Once something is in Standard, there for good

● Might think of better idea down the road

− As new hardware and computing platforms arise

● All roads might lead to Rome...

− but some get us there faster. (Parallelism goal)

Other extreme – Library Approach

● Libraries can be written today using existing
syntax (Examples C#, Java)

● Generally easier to implement a library than
syntax

● No additional complexity for language definition

● Syntax tends to be generalized

● Libraries can more easily adapt to specific
needs

− Controls, Parameters, Variants, etc

The syntax spectrum

● No need to stick with one extreme or the other

● Might be a middle ground that combines more
general syntax with a library approach...

− The more places new syntax can be used...

● Generally means more useful

● Other possibility is to provide both

− Libraries for those who want less “magic”

− Syntax for those that want ease of expression

Library approach

● How far can we go?

− To make libraries easy to use

● Specifically parallelism libraries

− Maybe sprinkle on some syntactic sugar?

− Eg. Ada Containers + Ada 2012 Iterator Syntax

for Element of Container loop

Element := Element + 1;

end loop;

Paraffin – A study in parallelism
libraries

● Features

− Written in Ada

− Parallel Loops

− Parallel Blocks

− Parallel subprograms

− Task Pools (optional)

− Ravenscar (optional)

− Non-commutative reduction (optional)

Paraffin – Features (Cont)

● Support for multilangage use

− C, C++, C#, Java, FORTRAN, Python, Rust

● Bindings to OpenMP and Cilk

● Native Paraffin implementations as well

● Stack safe parallel recursion

● 3 native load balancing strategies

− Work Sharing, Work Seeking, Work Stealing

● Supports for Ada 95, Ada 2005, and Ada 2012

● At least two different compiler vendors

− Adacore + ICC Irvine Compiler

C# Interfacing to Paraffin
class test_paraffin_lib

{

[ThreadStatic]

private static int partial_sum;

static void Main(string[] args)

{

int sum = 0;

paraffin_pkg.parallel_loop

(from : 1, to: 400000000,

reset: () => { partial_sum = 0; },

process: (start, finish) =>

{ for (int i = start; i <= finish; i++)

partial_sum += i;

},

reduce: () => { sum += partial_sum; });

Paraffin Library API
generic

type Loop_Index is range <>;

type Result_Type is private;

with function Reducer

(Left, Right : Result_Type)

return Result_Type;

Identity_Value : Result_Type;

package Parallel.Generic_Reducing_Loops is

function Parallel_Loop

(From, To : Loop_Index;

Loop_Body : not null access

procedure (From, To : Loop_Index;

Result : in out Result_Type))

return Result_Type;

end Parallel.Generic_Reducing_Loops;

Calling Paraffin From Ada Today
package Loops is new

Parallel.Generic_Reducing_Loops

(Loop_Index => Integer,

Result_Type => Integer,

Identity => 0,

Reducer => “+”); use Loops;

procedure Loop_Body

(Start, Finish : Integer;

Partial_Result : in out Integer) is

begin

for I in Start .. Finish loop

Partial_Result := Partial_Result + I;

end loop;

end Loop_Body;

Sum := Parallel_Loop (From => 1, To => N,

Loop_Body => Loop_Body'Access);

Idea #1 Lambda Procedures

Sum := Parallel_Loop

(From => 1,

To => N,

Loop_Body => (Start, Finish, Result)

(for I in Start .. Finish loop

Result := Result + I;

end loop));

Idea #2 Loop Body Procedures

for (Start, Finish, Result) of

Parallel_Loop (From => 1,

To => N) loop

for I in Start .. Finish loop

Result := Result + I;

end loop;

end loop;

Idea #3 Stream Function Loops

 Java takes a unique approach with Java Streams

 Functions are pipelined together

 A library approach

int sum = IntStream.range(1,N).parallel().sum();

Delete “Parallel”

to get Sequential loop

Collector function terminates Stream

Idea #3 Stream Function Loops

Sum := 0;

for I of Iter(1,N).Parallel.Add(Sum) loop

Sum := Sum + I;

end loop;

Idea #3 Stream Function Loops

Container Iteration example

-- Iterating through a map containers keys.

for Pair of Container.Keys loop

Put_Line(Key_Type'Image(Pair.Key) &

" => " &

Elem_Type'Image(Pair.Elem));

end loop;

Total : Integer := 0;

for V of Container.Elements.Sum(Total) loop

Total := Total + V;

end loop;

Summary

 A blend of libraries + general loop syntax can

express a parallel loop quite nicely

 Desire to represent parallel loops as loops

 Desire to represent functions as functions

 Which one wins? Maybe we need both?

 Combining Java Stream idea with idea for loop

procedure bodies seems like a good way to

express parallelism with minimal syntax.

Questions? Comments?

 Thank you!

