<(‘=] Consiglio Nazionale delle Ricerche

An Experience in Ada Multicore Programming:
Parallelisation of a Model Checking Engine

Franco Mazzanti ISTI - CNR
Pisa, ltaly

Formal Methods && Tools Laboratoryﬁd&&T
I Istituto di Scienza e Tecnologie dell'Informazione “A. Faedo” - Pisa

THE PROBLEM: How hard is it to exploit multicore parallelism? (ﬂ

* We already have a family of model checkers, developed “in house”
- written in Ada, using a sequential, explicit, on the fly, verification
algorithm.

* We would like to see how much gain can be obtained by the
exploitation of multicore features of the consumer-level
hardware / OS on which they run.

** How much redesign is needed, is it worth the effort?
* We would like to “touch with hand” the difficulties

and the advantages, associated with the use of Ada,
in designing a parallel multicore system.

** Which kind of support / facilities does Ada provide
for this kind of multicore programming?

THE OLD SOLUTION: The sequential (depth-first) evaluation

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

O

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

O

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

O

. AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

O

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE APPROACH: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

‘ AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

. AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

. AG P = false
@ AGP=true/in progress
() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

. AG P =false \Q Q
@ AGP=true/in progress

() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD SOLUTION: The sequential (depth-first) approach

©

Evaluation of the formula “AG P”: This state and all its successors satisfy P

. AG P =false \Q 7() ----- >
@ AGP=true/inprogress ¥, .

() node not yet explored

 part not generated explored transitions not yet explored transitions
> >

THE OLD ALGORITHM:

Recursive, top down, on the fly, graph traversal
that makes use of two global structures

Configurations_DB

oIy

O—0O

Computations_DB

O

FIRST PARALLEL SOLUTION: <ﬂ

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION: <ﬂ

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION: <ﬂ

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION: <ﬂ

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION:

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION: <ﬂ

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION:

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION:

Parallel graph generation / sequential evaluation

FIRST PARALLEL SOLUTION:

©

Parallel graph generation / sequential evaluation

Expected gain: The evaluator task should proceed faster!

FIRST PROBLEMS: Parallel graph generation / sequential evaluation (ﬂ

* Concurrent operations over the shared
collections must be synchronised
using locks or semaphores,

Ajﬁ&"
* Shared data must be preserved with
*f" Volatile and Atomic aspects
Lele
€
i' * Configurations_DB elements are constants

 Computations_DB elements are used by only one task.

FIRST PROBLEMS: Synchronization over global collections (ﬂ

We know from the RM how to encode a Semaphore ...

protected type Resource is
entry Seize;
procedure Release;
private

Busy : Boolean := False;
end Resource;

... SO we can adjust our custom

containers to be thread-safe ...
protected body Resource is
entry Seize when not Busy is

begin
and By LT True ... and observe the results ...
procedure Release is
begin
Busy := False;

end Release;
end Resource;

FIRST TESTS: Deadlock avoidance in Automatic Train Supervision (ﬂ

Verification of absence of deadlocks caused by the ATS system

1] Parco della Vittoria |

Via Accademia Piazza Universita

”
————— Viale dei Giardini
-

= >

= d
L X X X X] Qe oo ow om o wm w= (Do =

-

Model with 1,636,535 states 8 trains moving one-way through the yard

Old Sequential Evaluation time Parallel Evaluation times (-O3)

E E+W E+W+W E+W+W+W
100 sec. 57 sec. (-03)

FIRST TESTS: Deadlock avoidance in Automatic Train Supervision (ﬂ

Verification of absence of deadlocks caused by the ATS system

1] Parco della Vittoria |

Via Accademia Piazza Universita

/"
~

z=-- . . L
=== Viale dei Giardini
”
-

-

sessesdeecc==D e~

/”
’/

L2

Model with 1,636,535 states 8 trains moving one-way through the yard

Old Sequential Evaluation time Parallel Evaluation times (-O3)

E E+W E+W+W E+W+W+W
100 sec. 57 sec. (-03) 75sec. 220sec. 349sec. 394 sec.

FIRST PROBLEMS: Synchronization over global collections ﬂ

Protectégobjects Custom locks (spinlocks)

-- GNAT RUN-TIME LIBRARY (GNAR_I:) COMPONENTS --
- SYSTEM.MULTIPROCESSORS.SPIN_LOCKS -
-- Spec --

- Copyright (C) 2010, AdaCore --

package Spin_Locks is
type Spin_Lock is limited record ... end record;
procedure Lock (Slock : in out Spin_Lock);
procedure Unlock (Slock : in out Spin_Lock);

end Spin_Locks;

Old Sequential Evaluation time Parallel Evaluation times (-O3)

E E+W E+W+W E+W+W+W

100 sec. 57 sec. (-03)

FIRST PROBLEMS: Synchronization over global collections ﬂ

Protectégobjects Custom locks (spinlocks)

-- GNAT RUN-TIME LIBRARY (GNAR_I:) COMPONENTS --
- SYSTEM.MULTIPROCESSORS.SPIN_LOCKS -
-- Spec --

- Copyright (C) 2010, AdaCore --

package Spin_Locks is
type Spin_Lock is limited record ... end record;
procedure Lock (Slock : in out Sin_Lock);
procedure Unlock (Slock : in out Spin_Lock);

end Spin_Locks;

Old Sequential Evaluation time Parallel Evaluation times (-O3)

E E+W E+W+W E+W+W+W
100 sec. 57 sec. (-03) 72sec. 48sec 45sec. 50 sec.

FIRST PROBLEMS: Limits (ﬂ

Old Sequential Evaluation time Parallel Evaluation times (-O3)
E E+W E+W+W E+W+W+W
100 sec. 57 sec. (-03) 72 sec. 48sec 45sec. 50 sec.

Even in absence of worker’s competition
volatile/atomic aspects undermine

generated, no more benefits gained

from parallelism.
More worker tasks we create, more

competion has the main evaluator task.
(and priorities and not a solution) State space generation may go much
further than what actually
needed

SECOND PARALLEL SOLUTION: Truly Parallel evaluation (ﬂ

SECOND PARALLEL SOLUTION: Truly Parallel evaluation <ﬂ

SECOND PARALLEL SOLUTION: Truly Parallel evaluation <ﬂ

/0

SECOND PARALLEL SOLUTION: Truly Parallel evaluation <ﬂ

SECOND PARALLEL SOLUTION: Truly Parallel evaluation <ﬂ

SECOND PARALLEL SOLUTION: Truly Parallel evaluation <ﬂ

SECOND PARALLEL SOLUTION: Truly Parallel evaluation <ﬂ

SECOND PARALLEL SOLUTION: Truly Parallel evaluation <ﬂ

e 4"\'
ks
~ee
0—0S0
A
N 2

SECOND PARALLEL SOLUTION: Truly Parallel evaluation <ﬂ

SECOND PARALLEL SOLUTION: Truly Parallel evaluation <ﬂ

Expected gain: better exploitation of parallelism, better use of state-space

MORE PROBEMS: Truly Parallel evaluation

Configurations_DB Computation_Fragments_ DB

Incomplete
Fragments

Work Pool

<> Access to the global containers must be synchronized

<> Access to the individual computation fragments must be protected!

o 0 © @ @

MORE PROBEMS: Protecting computation fragments

—

Protected Objects VS

protected type Fragment (...) is
function GetStatus ...;
procedure SetStatus (...);
procedure GetNextIncompleteSubFragmenty(...);
procedure Link(...);
procedure NotifyCompletionOfSubfrag(...);
private

end Fragment;

:= theFragment.GetStatus;

theFragment.SetStatus(...);

Spinlocks (again?)
type Fragment (..) is tagged limited record
Lock: Lock_Ref := new Lock_Data with Volatile;
end record;
function GetStatus ...;
procedure SetStatus (...);
procedure GetNextIncompleteSubFragment(...);

procedure Link(...);

procedure NotifyCompletionOfSubfrag(...);

theFragment.GetNextIncompleteSubFragmenty(...);

theFragment.NotifyCompletionOfSubfrag(...);

MORE TESTS: Deadlock avoidance (again) (ﬂ

8 Trains moving one-way

Model with 1,636,535 states

Parallel Evaluation times (-O3)

Old Sequential Evaluation time using protected objects
E E+E E+E+E E+E+E+E

66 sec. 37sec. 29sec. 28sec.

100 sec. 57 sec. (-03)

using spinlocks

E E+E E+E+E E+E+E+E
65sec. 36sec. 27sec. 24sec.

MORE TESTS: Deadlock avoidance (again) <ﬂ

8 Trains moving two-way

Model with 8,878,643 states

Parallel Evaluation times (-O3)

Old Sequential Evaluation time using protected objects
E E+E E+E+E E+E+E+E

437 sec. 265 sec. 207 sec. 189 sec.

600 sec. 371 sec. (-03)

using spinlocks

E E+E E+E+E E+E+E+E
414 sec. 251 sec. 192 sec. 164 sec.

MORE TESTS:

Deadlock avoidance (again)

©

speedup factor
O

eight-core Linux workstation
quad-core MacBook Pro

1E 2 E
55.1 sec. 34.2 sec.

2 3 4 d 6 7 8

degree of parallelism

3E 4 E 5E 6 E 7E 8 E
25.9sec. 21.9sec. 19.7sec. 19.1 sec. 18.4sec. 17.9 sec.

WHAT NEXT/ CONCLUSIONS: Further lines of work <ﬂ

* Parallelisation of model checking evaluation still in progress ...

* Parallel Efficiency of Global Shared Containers can be improved ...

* Parallel Workflow can be further optimised (parallel work pool) ...

* More benefits expected ... e.g from breadth first approach ...

WHAT NEXT/ CONCLUSIONS: Further lines of work <ﬂ

* Parallelisation of model checking evaluation still in progress ...

* Parallel Efficiency of Global Shared Containers can be improved ...

* Parallel Workflow can be further optimised (parallel work pool) ...

* More benefits expected ... e.g from breadth first approach ...

\/

%* Is the gain worth the effort?

WHAT NEXT/ CONCLUSIONS: Further lines of work <ﬂ

* Parallelisation of model checking evaluation still in progress ...

* Parallel Efficiency of Global Shared Containers can be improved ...

* Parallel Workflow can be further optimised (parallel work pool) ...

* More benefits expected ... e.g from breadth first approach ...

D

% Is the gain worth the effort? YE’S

+* Does Ada provide good support for
parallel multicore programming?

WHAT NEXT/ CONCLUSIONS: Further lines of work <ﬂ

* Parallelisation of model checking evaluation still in progress ...

* Parallel Efficiency of Global Shared Containers can be improved ...
* Parallel Workflow can be further optimised (parallel work pool) ...

* More benefits expected ... e.g from breadth first approach ...

s Is the gain worth the effort? YES!

o 1))
+* Does Ada provide good support for @ d_

s too
parallel multicore programming?
L=

3
<
@

\

WHAT NEXT/ CONCLUSIONS: Further lines of work <ﬂ

* Parallelisation of model checking evaluation still in progress ...

* Parallel Efficiency of Global Shared Containers can be improved ...
* Parallel Workflow can be further optimised (parallel work pool) ...

* More benefits expected ... e.g from breadth first approach ...

s Is the gain worth the effort? YES!

o 1))
+* Does Ada provide good support for @ d_

s too
parallel multicore programming?
L=

3
<
@

\

WHAT NEXT: work still in progress <ﬂ

Thanks!

