
Test Case Prioritization Using Online Fault

Detection Information

Mohsen Laali

Huai Liu

Margaret Hamilton

Maria Spichkova

Heinz Schmidt

Outline

• Introduction

– Regression Testing

– Test Case Prioritization (TCP)

• Research Questions

• Experimental Methodology & Results

• Conclusions

RMIT University©July 2015 School of Computer Science and IT 2

Introduction

• Regression Testing

• Different Types

– Test Case Minimization

– Test Case Selection

– Test Case Prioritization

RMIT University©Jun 2016 School of Computer Science and IT 3

TCP Techniques

• Coverage Granularity

– Statement

– Branch

• Existing Techniques

– Total

– Additional

RMIT University©Jun 2016 School of Computer Science and IT 4

TS

TB

AB
AS

TCP Techniques Illustration

RMIT University©Jun 2016 School of Computer Science and IT 5

• Total Statement TCP: t1, t4, t5, t2, t3

• Additional Branch TCP: t5, t2, t1, t3, t4

Code-level TCP

• Motivation

– Even Distribution of Faults

80-20 rule

– Offline Method

Location of fault

• Can a TCP Technique be improved using the location of previously identified

faults?

• How different coverage criteria could affect the effectiveness of TCP

techniques based on the location of pervious detected faults?

RMIT University©July 2015 School of Computer Science and IT 6

Proposing Online TCP Techniques

RMIT University©Jun 2016 School of Computer Science and IT 7

Online TCP Techniques

RMIT University©Jun 2016 School of Computer Science and IT 8

Online Test Case Prioritization Algorithm

Proposing Online TCP Techniques (Cont.)

RMIT University©Jun 2016 School of Computer Science and IT 9

Weight for each statements

Weight for covered statements

OS 0

OB 0

OB 1
OS 1

UCW = 0

UCW = 1

Online TCP – Statement-Based Example

RMIT University©Jun 2016 School of Computer Science and IT 10

si t1 t2 t3 t4 t5

s1 3/3 3/3 3/3 3/3 3/3

s2 3/3 3/3

s3 1 1 1

s4 3/3

s5 1

s6 1

s7 1 1

s8 3/3

s9 1

s10 1

Total 4 3 3 4 4

• Step 1

– Randomly selected t1

– Given 3 detected faults by t1

– Updating weights by 3/3

si t1 t2 t3 t4 t5

s1 1 1 1 1 1

s2 1 1

s3 1 1 1

s4 1

s5 1

s6 1

s7 1 1

s8 1

s9 1

s10 1

Total 4 3 3 4 4

• Step 2

– Randomly selected t5

– Given 2 detected faults by t5

– Updating weights by 2/5

si t1 t2 t3 t4 t5

s1 3/3 2/5+3/5 2/5+3/5 2/5+3/5 2/5+3/5

s2 3/3 3/3

s3 2/5 2/5 2/5

s4 3/3

s5 1

s6 1

s7 2/5 2/5

s8 3/3

s9 1

s10 2/5

Total 4 3 2.4 2.8 2.2
• Step 3

– Selecting t2 with maximum weight

– Given 3 detected faults by t2

– Updating weights by 3/8

si t1 t2 t3 t4 t5

s1 3/32/8+3/8+3/8 2/8+3/8+3/8 2/8+3/8+3/8 2/5+3/5

s2 3/3 3/8+3/8

s3 2/8 2/8 2/5

s4 3/3

s5 3/8

s6 1

s7 2/8 2/5

s8 3/3

s9 1

s10 2/5

Total 4 2.12 2.25 2.5 2.2

• Step 4

– Selecting t4 with maximum weight

– Given 4 detected faults by 4

– Updating weights by 4/12

• Final order:

– t1, t5, t2, t4, t3

fi t1 t2 t3 t4 t5

f1  

f2  

f3 

f4 

f5 

f6  

f7  

f8 

f9   

f10 

Total 3 3 4 4 2

Experimental Objects

• Siemens Programs

- Consists of 7 programs

- Test case, faulty versions, and oracle version

RMIT University©July 2015 School of Computer Science and IT 11

Experimental Study

RMIT University©Jun 2016 School of Computer Science and IT 12

Summary of Statistical Analyses

RMIT University©Jun 2016 School of Computer Science and IT 13

- Example 1:

OS0 outperforms baseline AS in 7

object programs.

- Example 2:

OB0 outperforms baseline TB in one

object program, while twice has been

outperformed by the TB.

AS AB

AS AB

TS

TS

TB TB

OS0 OS1 OB0 OB1

Higher performing

Lower performing

Summary

• Can a TCP Technique be improved using the location of previously identified

faults?

 Our proposed techniques outperform baselines for Siemens

experimental objects using APFD score.

• How different coverage criteria could affect the effectiveness of TCP

techniques based on the location of previously detected faults?

 Coverage criterion affects the performance

 Comparing our methods with baselines

 Both statement & branch-based outperform baselines

 Comparing our proposed methods

 Branch-based methods more effective than Statement-based

RMIT University©Jun 2016 School of Computer Science and IT 14

Mohsen Laali

Mohsen.Laali@rmit.edu.au

Backup Slides

RMIT University©March 2011 International & Development Portfolio 17

APFD

RMIT University©March 2011 International & Development Portfolio 18

RQ 2) Human-level TCP

• RQ 2-1) How often do users repeat the same type of faults in software

developments?

• RQ 2-2) What do affect the frequency of users’ faults in software

developments?

– Volume of contributions to the code

– Time of contributions to the code

– Change rate of the code

– User community of the code language

RMIT University©July 2015 School of Computer Science and IT 19

RQ 2) Human-level TCP

• Data

– Git hub archive

• Methods

– Pre-requisites

Human Error Classification

Error Associations

– RQ 2-1

– RQ 2-2

RMIT University©July 2015 School of Computer Science and IT 20

https://www.githubarchive.org/

RQ 2) Human Classification Error

• Method

RMIT University©July 2015 School of Computer Science and IT 21

RQ 2) Bugs Classification

RMIT University©July 2015 School of Computer Science and IT 22

RQ 2) Error Associations

RMIT University©July 2015 School of Computer Science and IT 23

Time

Future Work

• Online TCP Policy

80-20 rule

Captured 20% by the online execution of test cases

• Possible Improvements

Who makes the faults?

Human habits in making faults

Capturing 20% incorporating human factors

RMIT University©Jun 2016 School of Computer Science and IT 24

