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Introduction

• Regression Testing 

• Different Types

– Test Case Minimization

– Test Case Selection

– Test Case Prioritization
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TCP Techniques 

• Coverage Granularity

– Statement

– Branch

• Existing Techniques

– Total

– Additional
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TCP Techniques Illustration
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• Total Statement TCP:  t1, t4, t5, t2, t3

• Additional Branch TCP: t5, t2, t1, t3, t4



Code-level TCP

• Motivation 

– Even Distribution of Faults

80-20 rule

– Offline Method

Location of fault

• Can a TCP Technique be improved using the location of previously identified 

faults?

• How different coverage criteria could affect the effectiveness of TCP 

techniques based on the location of pervious detected faults?
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Proposing Online TCP Techniques
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Online TCP Techniques
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Online Test Case Prioritization Algorithm



Proposing Online TCP Techniques (Cont.)
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Weight for each statements 

Weight for covered statements 

OS 0

OB 0

OB 1
OS 1

UCW = 0

UCW = 1



Online TCP – Statement-Based Example
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si t1 t2 t3 t4 t5

s1 3/3 3/3 3/3 3/3 3/3

s2 3/3 3/3

s3 1 1 1

s4 3/3

s5 1

s6 1

s7 1 1

s8 3/3

s9 1

s10 1

Total 4 3 3 4 4

• Step 1

– Randomly selected t1

– Given 3 detected faults by t1

– Updating weights by 3/3

si t1 t2 t3 t4 t5

s1 1 1 1 1 1

s2 1 1

s3 1 1 1

s4 1

s5 1

s6 1

s7 1 1

s8 1

s9 1

s10 1

Total 4 3 3 4 4

• Step 2

– Randomly selected t5

– Given 2 detected faults by t5

– Updating weights by 2/5

si t1 t2 t3 t4 t5

s1 3/3 2/5+3/5 2/5+3/5 2/5+3/5 2/5+3/5

s2 3/3 3/3

s3 2/5 2/5 2/5

s4 3/3

s5 1

s6 1

s7 2/5 2/5

s8 3/3

s9 1

s10 2/5

Total 4 3 2.4 2.8 2.2
• Step 3

– Selecting t2 with maximum weight

– Given 3 detected faults by t2

– Updating weights by 3/8

si t1 t2 t3 t4 t5

s1 3/32/8+3/8+3/8 2/8+3/8+3/8 2/8+3/8+3/8 2/5+3/5

s2 3/3 3/8+3/8

s3 2/8 2/8 2/5

s4 3/3

s5 3/8

s6 1

s7 2/8 2/5

s8 3/3

s9 1

s10 2/5

Total 4 2.12 2.25 2.5 2.2

• Step 4

– Selecting t4 with maximum weight

– Given 4 detected faults by 4

– Updating weights by 4/12

• Final order:

– t1, t5, t2, t4, t3

fi t1 t2 t3 t4 t5

f1  

f2  

f3 

f4 

f5 

f6  

f7  

f8 

f9   

f10 

Total 3 3 4 4 2



Experimental Objects 

• Siemens Programs 

- Consists of 7 programs 

- Test case, faulty versions, and oracle version 
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Experimental Study
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Summary of Statistical Analyses
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- Example 1:

OS0 outperforms baseline AS in 7 

object programs.

- Example 2:

OB0 outperforms baseline TB in one 

object program, while twice has been 

outperformed by the TB.  

AS AB

AS AB

TS

TS

TB TB

OS0 OS1 OB0 OB1

Higher performing

Lower performing



Summary

• Can a TCP Technique be improved using the location of previously identified 

faults?

 Our proposed techniques outperform baselines for Siemens 

experimental objects using APFD score.  

• How different coverage criteria could affect the effectiveness of TCP 

techniques based on the location of previously detected faults?

 Coverage criterion affects the performance

 Comparing our methods with baselines

 Both statement & branch-based outperform baselines

 Comparing our proposed methods

 Branch-based methods more effective than Statement-based 
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Backup Slides
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APFD
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RQ 2) Human-level TCP

• RQ 2-1) How often do users repeat the same type of faults in software 

developments?

• RQ 2-2) What do affect the frequency of users’ faults in software 

developments?

– Volume of contributions to the code

– Time of contributions to the code

– Change rate of the code

– User community of the code language 
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RQ 2) Human-level TCP

• Data

– Git hub archive

• Methods

– Pre-requisites

Human Error Classification

Error Associations

– RQ 2-1

– RQ 2-2 
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https://www.githubarchive.org/


RQ 2) Human Classification Error

• Method
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RQ 2) Bugs Classification
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RQ 2) Error Associations
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Future Work

• Online TCP Policy 

80-20 rule

Captured 20% by the online execution of test cases 

• Possible Improvements

Who makes the faults? 

Human habits in making faults

Capturing 20% incorporating human factors
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