
Addressing the Regression Test Problem with
Change Impact Analysis for Ada

Andrew V. Jones, Vector Software, Inc.
Ada-Europe 2016, Pisa

© 2016 Vector Software, Inc. All Rights Reserved. 1/25

Setting the scene

I’m a “cool” developer …

© 2016 Vector Software, Inc. All Rights Reserved. 2/25

Setting the scene

I’m a “cool” developer …

© 2016 Vector Software, Inc. All Rights Reserved. 2/25

The problem

• I’ve made a change to my software …
• and I now need to test it …
• but I have thousands of tests …

Help!

© 2016 Vector Software, Inc. All Rights Reserved. 3/25

The solution

The test-case selection problem [2]:

“determine which test-cases need to be re-executed […] in
order to verify the behaviour of modified software”

With a focus on:

• Minimality
• Ada

© 2016 Vector Software, Inc. All Rights Reserved. 4/25

Pretty picture!

Package A
Affected Tests

Package C
Changed Code

Package B
Unaffected Code

Package F
Affected Coverage

Package D
Unaffected Code

Package E
Unaffected Code

© 2016 Vector Software, Inc. All Rights Reserved. 5/25

The intuition

• Construct a DAG D of the dependencies of the SUT
• Calculate the transitive closure D∗

• (x, y) ∈ D∗ has the reading “x depends on y”

• If (x, y) ∈ D∗ and y has been modified, re-test x!

The key here is how we construct D …

© 2016 Vector Software, Inc. All Rights Reserved. 6/25

A minor divergence: code coverage

A way of tracking what lines have been executed

Commonly used in:

• TDD
• Safety-critical systems

• The idea of “test completeness”

© 2016 Vector Software, Inc. All Rights Reserved. 7/25

Constructing the dependency graph

• Statically – anything outside of a function/procedure
1. Type and Ada specification dependencies – A with’s B as part of
A’s spec

2. Uses and Ada body dependencies – A with’s B as part of A’s body

• Dynamically – anything inside of a function/procedure
3. Subprogram invocation and coupling – Foo calls Bar

© 2016 Vector Software, Inc. All Rights Reserved. 8/25

Dynamic dependencies

1 package body Peano is
2

3 function One return Integer is
4 begin
5 return Succ(Zero);
6 end One;
7

8 function Zero return Integer is
9 begin
10 return 0;
11 end Zero;
12

13 function Succ (Val : in Integer)
14 return Integer is
15 begin
16 return Val + 1;
17 end Succ;
18

19 end Peano;

One

SuccZero

© 2016 Vector Software, Inc. All Rights Reserved. 9/25

Dynamic impact analysis

Test Data

Executable
Software

Runtime
Data

Intermediate
Representation

Impact SetChange
Set

© 2016 Vector Software, Inc. All Rights Reserved. 10/25

A larger example

1 package A is
2
3 function Foo
4 return Integer;
5
6 end A;

1 package B is
2
3 function Bar
4 return Integer;
5
6 end B;

1 with B;
2
3 package body A is
4
5 Qux : Integer;
6
7 function Foo return Integer

is
8 begin
9 return Qux + B.Bar;
10 end;
11
12 begin
13
14 Qux := 0;
15
16 end A;

1 package body B is
2
3 Narf : Integer;
4
5 function Bar return Integer

is
6 begin
7 return Narf;
8 end;
9
10 begin
11
12 Narf := 0;
13
14 end B;

© 2016 Vector Software, Inc. All Rights Reserved. 11/25

Combining static and dynamic

Spec A Spec B

Body A Body B

A.Foo B.Bar

(a) Static Dep.

Spec A Spec B

Body A Body B

A.Foo B.Bar

(b) Dynamic Dep.

Spec A Spec B

Body A Body B

A.Foo B.Bar

(c) Combined Dep.

© 2016 Vector Software, Inc. All Rights Reserved. 12/25

Intermediate representation

Contains : Package → Subprogram∗

Uses : Package × {Body,Spec} → Package∗

Covers : Test → Subprogram∗

© 2016 Vector Software, Inc. All Rights Reserved. 13/25

Calculating the selection

Simplistic approach

1. Use a work-list to calculate D∗ at the subprogram level
2. Find all tests with coverage on the affected subprograms
3. Re-execute those tests

© 2016 Vector Software, Inc. All Rights Reserved. 14/25

What about OOP?

Spec Base

Body Base Spec Der.

Body Der.B.BetaB.Alpha Prog. P Test t

D.Alpha

Consider: Derived now contains Beta, or a change to Base’s body.

© 2016 Vector Software, Inc. All Rights Reserved. 15/25

Implementation

Not a demo, not a sales pitch: functionality implemented inside of
the commercial unit-testing tool VectorCAST.

© 2016 Vector Software, Inc. All Rights Reserved. 16/25

Evaluation

We took two open-source code bases …

Higher performance than bind!!! See: [1].

© 2016 Vector Software, Inc. All Rights Reserved. 17/25

Evaluation

Build VectorCAST environments on them, and automatically created
tests:

Metric Malaise Ironsides

Number of files 9 9
Number of lines 654 4,745
Number of non-empty Ada lines 468 3,441
Number of subprograms 46 97
Aggregate complexity metric [4] 94 492
Total number of tests 228 573
Coverage (statement / branch) 68% / 68% 47% / 36%

Next we automatically modified the source-code …

© 2016 Vector Software, Inc. All Rights Reserved. 18/25

Automated change

Simplistic (but real!) example taken from [3]:

1 function Is_Delimiter (C : Character) return Boolean is
2 begin
3 null;
4 case C is
5 when '&' | ''' | '(' | ')' | '*' | '+' |
6 ',' | '-' | '.' | '/' | ':' | ';' |
7 '<' | '=' | '>' | '|' =>
8 return True;
9 when others =>
10 return False;
11 end case;
12 end Is_Delimiter;

And then we re-ran the test-suite …

© 2016 Vector Software, Inc. All Rights Reserved. 19/25

Experimental results

Example Mode Units Subprograms # Tests Build + Exec.
Changed Changed Executed Time (s)

Malaise
Without CBT

9 21
4,788 1,002.48

With CBT 165 165.85

Ironsides Without CBT 9 93 53,289 6,986.17
With CBT 1,347 1,147.14

Take-home

• 97% reduction in tests executed
• 84% reduction in time spent testing⇒ Re-world testing should scale better

© 2016 Vector Software, Inc. All Rights Reserved. 20/25

Artefacts

All code, VectorCAST artefacts and the test harness are available
under a MIT license:

https://github.com/andrewvaughanj/CBT_for_Ada_Examples

© 2016 Vector Software, Inc. All Rights Reserved. 21/25

https://github.com/andrewvaughanj/CBT_for_Ada_Examples

What’s next?

Right now, the approach is safe but still quite coarse:

• Selects at least what is necessary, but is not minimal

We have a number of ideas in this area:

• Changes only affecting certain branches (e.g., constrained to one
branch of an if statement)

• Uses of package-level variables
• Innocuous changes (e.g., a new variable, new procedure)

© 2016 Vector Software, Inc. All Rights Reserved. 22/25

Summing it up

• Effective approach for “change-based testing” of Ada
• Can dramatically reduce the re-testing effort (97% reduction on
a real-world examples!)

• Designed to speed-up developer testing; shouldn’t replace
complete end-to-end runs

• Available now in VectorCAST!

© 2016 Vector Software, Inc. All Rights Reserved. 23/25

Fin.

Questions?

Looking for collaborations between Vector and academia – speak to
me if this is interesting:

andrew.jones@vectorcast.com

© 2016 Vector Software, Inc. All Rights Reserved. 24/25

References I

[1] M. C. Carlisle. Ironsides homepage.
http://ironsides.martincarlisle.com, April 2015.
Accessed: 2016-03-22.

[2] E. Engström, P. Runeson, and M. Skoglund. A Systematic Review
On Regression Test Selection Techniques. Information &
Software Technology, 52(1):14–30, 2010.

[3] P. Malaise. PMA’s Ada contrib. http://pmahome.cigecompta.
fr/ada/html/REPOSIT_LIST.html, January 2016. Accessed:
2016-03-22.

[4] A. H. Watson, T. J. McCabe, and D. R. Wallace. Structured Testing: A
Software Testing Methodology Using the Cyclomatic Complexity
Metric. Technical Report Special Publication 500-235, U.S.
Department of Commerce/National Institute of Standards and
Technology, September 1996.

© 2016 Vector Software, Inc. All Rights Reserved. 25/25

http://ironsides.martincarlisle.com
http://pmahome.cigecompta.fr/ada/html/REPOSIT_LIST.html
http://pmahome.cigecompta.fr/ada/html/REPOSIT_LIST.html

