
Automated Testing of SPARK

Contracts

Ada Europe 2016

Ian Broster (Rapita)

Martin Brain (University of Oxford)

Stuart Matthews, Andrew Hawthorn, Florian Schanda (Altran)

AUTOSAC NATEP Research Project

Rolls-Royce

SPARK Contracts

Automated Testing of SPARK Contracts

Reduce time and effort to test low-level requirements (LLRs) of

safety-critical SPARK code

Test
Results

LLRs

Source
Code TestsCoverage

Test

creation

Test review

Test maintenance

Test execution

Automation using SPARK Contracts

function Days_In_Month (M : Month_T; Year : Year_T)

return Days_In_Month_T

with Post =>

Days_In_Month'Result =

(case M is

when September | April | June | November => 30,

when February =>

(if Year mod 100 = 0 then

(if Year mod 400 =0 then 29 else 28)

else

(if Year mod 4 = 0 then 29 else 28)),

when others => 31);

SPARK contracts can describe a subprogram specification well

We can use them for:

 Low-level requirements (LLR)

 Auto-generation of unit tests based on LLR

 Verification of Test Results

AUTOSAC Tool chain

1. Low-Level

Requirements

(SPARK post-

conditions)

2. Source

Code

Bounded Model

Analysis

3.Test Inputs

5. Test Harness

Test

Results

University of Oxford:

Bounded model checker

4. Test Oracle

Code

Coverage

Integration with RapiTest Framework

Tests have been generated by CMBC

Exploring “coverage” of the post-condition

CBMC
 Bounded model checker from University of Oxford.

“Explores post-condition to provide test inputs that cover all
the post condition”

1. Coverage of the post-condition
 i.e. generates test inputs that should exercise each part of post condition

Case M is when September | April | June | November => 30,

 Generates a test input for either: Sept, April, June or November.

2. Boundary coverage for inputs

(e.g. Integer’First, Integer’Last, and intermediate values etc)

3. Test cases that explore discontinuities in non-deterministic
post conditions (future work)

Test generation

function Days_In_Month (M : Month_T;

Year : Year_T)

return Days_In_Month_T

with Post =>

Days_In_Month'Result =

(case M is

when September | April | June | November =>

30,

when February =>

(if Year mod 100 = 0 then

(if Year mod 400 =0 then 29 else 28)

else

(if Year mod 4 = 0 then 29 else 28)),

when others => 31);

suite "autosac_tests__days_in_month" is

scope global.autosac_tests.days_in_month (

in param.m as global.autosac_tests.month_t,

in param.year as global.autosac_tests.year_t)

return global.autosac_tests.days_in_month_t is

/=--

Test case

--=/

test "Test 1" is

-- Run of the unit: days_in_month

run is

param.m := January;

param.year := 1000;

end run;

end test;

test "Test 2" is

run is

param.m := February;

param.year := 1000;

end run;

end test;

CMBC – test generation

Ada Specification RapiTest Framework Script

Test script in RapiTest Framework

Execute the unit-tests

Unit tests auto-generated

<...>

-- Adding tests

RVS_RTS_Ext.Begin_Test(1738044706);

declare

RVS_RTS_LOCAL_VAR_1733935649 :

standard.autosac_tests.days_in_month_t :=

standard.autosac_tests.days_in_month(m =>

standard.autosac_tests.month_t‘

(autosac_tests.january),

year => 1000);

begin

null; -- Any post-call assertions here...

end;

<...>

suite "autosac_tests__days_in_month" is

scope global.autosac_tests.days_in_month (

in param.m as global.autosac_tests.month_t,

in param.year as global.autosac_tests.year_t)

return global.autosac_tests.days_in_month_t is

/=--

Test case

--=/

test "Test 1" is

-- Run of the unit: days_in_month

run is

param.m := January;

param.year := 1000;

end run;

end test;

test "Test 2" is

run is

param.m := February;

param.year := 1000;

end run;

end test;

RapiTest Framework Script Driver Code

Test Results

Test results? Post Condition Is the Test Oracle

Test success means post-condition

evaluates true.

Q: how completely can the post

condition describe the test result?

function Days_In_Month (M : Month_T;

Year : Year_T)

return Days_In_Month_T

with Post =>

Days_In_Month'Result =

(case M is

when September | April | June | November =>

30,

when February =>

(if Year mod 100 = 0 then

(if Year mod 400 =0 then 29 else 28)

else

(if Year mod 4 = 0 then 29 else 28)),

when others => 31);

Test cases to explore discontinuities

function I_sqrt (M : Natural) return integer

with Post =>

I_sqrt’Result ** 2 <= M

and

(I_sqrt’Result + 1) ** 2 > M;

Human tester might look at tests like:

 0, 1, 2, 63, 64, 65, Integer’Last

How can a computer seek similar results?

 Currently CBMC would only produce one test case + out of range errors

(Future work)

i_sqtr(63)=7

49 <= 63

64 > 63

Applicability to DO-178C

6.4.3c: This testing method should concentrate on

demonstrating that each software component complies with its

low-level requirements. Requirements based low-level testing

ensures that the software components satisfy their low-level

requirements. Typical errors revealed by this testing method

include:

1 Failure of an algorithm to satisfy a software requirement;

2 Incorrect loop operations

3 Incorrect logic decisions

4 Failure to process correctly legitimate combinations of input

conditions

5 Incorrect responses to missing or corrupted input data

6 Incorrect handling of exceptions, such as arithmetic faults or

violations of array limits

7 Incorrect computation sequence

8 Inadequate algorithm precision, accuracy, or performance

Independence of compiler?

Common mode failure: the compiler ?
 Compiler generates test code

 AND compiler generates test-oracle (executing post-conditions). Normally the test

results generated by a tester (greater independence)

Risk of common-mode failure in the compiler?
 The diversity of the specification and implementation would be enforced through

coding standards that kept a separation and hence diversity between contracts and

implementation.

AUTOSAC Project status

End-to-end toolchain established and working

on basic examples

 CMBC -> analysing SPARK post-conditions

 RapiTest Framework -> test scripts, execution, coverage etc.

 SPARK examples and case studies in preparation



Looking forward to seeing evaluation in case studies.

Conclusion

Basic idea:
 Use power of SPARK post conditions to generate tests

 (Or at least get a head-start!)

How?
 SPARK -> CMBC ->RapiTest Framework

Benefit
 Reduce manual effort on creating tests, reviewing tests,

executing tests, maintaining tests

Status
 Prototype – 2 case studies coming up

Looking for beta test…
 ianb@rapitasystems.com

Test
Results

LLRs

Source
Code TestsCoverage

www.RapitaSystems.com/blog

mailto:ianb@rapitasystems.com

