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@ tasks and synchronization primitives represented by control flow
graphs (CFGs)
o CFG stored in form of adjacency matrix

o CFG edges labeled by elements of a semiring (compare: automata,
DFAs, regular expressions)
@ set of labels £ = Ly U Ls, where

e Ly ...set of non-synchronization labels and
o Lg ...set of labels representing calls to synchronization primitives
e Ly and Lg are disjoint

@ matrices out of M = {M = (m; ;)| m;; € L} only.
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Preliminaries and Modelling

e Edge splitting: for synchronization primitive calls (e.g. p- and v-calls
to semaphores); the only statement on the corresponding (split) edge.
@ system model .. .tuple (T,S, L), where
e T ...finite set of CFG adjacency matrices describing tasks,
e S .. .finite set of CFG adjacency matrices describing synchronization
primitives (e.g. semaphores), and
e labelsin T € T and S € S ...elements of £ and Lg, respectively.
e Concurrent Program Graph (CPG) ...a graph C = (V| E, ne) with
e set of nodes V/,
o set of directed edges E C V x V, and
e so-called entry node n, € V

@ sets V and E constructed out of the elements of (7, S, L).
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Kronecker Product

Given an m-by-n matrix A and a p-by-q matrix B, their Kronecker product
A ® B is an mp-by-nq block matrix defined by

a1-B - a, B
AR B =
ami-B -+ amn-B
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Given an m-by-n matrix A and a p-by-q matrix B, their Kronecker product
A ® B is an mp-by-nq block matrix defined by

a1-B - a, B
A®B=

ami-B -+ amn-B

Given two automata, the Kronecker product synchronously executes them
(lock-step).
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Kronecker Sum

Given a matrix A of order m and a matrix B of order n, their Kronecker
sum A @ B is a matrix of order mn defined by

ADB=AL+1,®B

where I, and I, denote identity matrices of order m and n, respectively.
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Kronecker Sum

Given a matrix A of order m and a matrix B of order n, their Kronecker
sum A @ B is a matrix of order mn defined by

where I, and I, denote identity matrices of order m and n, respectively.

@ Kronecker sum calculates all possible interleavings of two concurrently
executing automata

@ even if the automata contain conditionals and loops.
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Selective Kronecker Product

@ limits synchronization of the operands to labels | € L C L. J
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Selective Kronecker Product

@ limits synchronization of the operands to labels | € L C L. J

Given an m-by-n matrix A and a p-by-q matrix B, we call A©@; B their
selective Kronecker product. For all / € L C L let
Ao B= (aiJ) QL (br,s) = (Ct,u)y where

_ / ifai,j:br,szlv lel,
C(i—1)-p+r,(j—1)-g+s = 0 otherwise.

Selective Kronecker product ensures that, e.g., a semaphore p-call in the
left operand is paired with the p-operation in the right operand and not
with any other operation in the right operand. In practice, we usually
constrain L C Ls.
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Filtered Matrix

We call M| a filtered matrix and define it as a matrix of order o(M)
containing entries of L C £ of M = (m; ) and zeros elsewhere:

m; ; ifm; ;L
My = (mg;i ), where my;;; = { 0 " othelrdwise.7
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System Model

The adjacency matrix representing program P is referred to as P (= CPG).
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System Model

The adjacency matrix representing program P is referred to as P (= CPG).
P can be efficiently computed by

P=Toc, S+ Tz, ® los)-
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Examples

Initially Unlocked Binary Initially Locked Binary Counting
Semaphore Semaphore Semaphore
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Barriers

@ Barrier is a synchronization construct available in most modern
programming languages (e.g. Ada and Java).

@ Barrier is used to synchronize a set of n threads.
@ The first thread(s) reaching the barrier will be blocked.

@ When the nth thread reaches the barrier, all the threads are released
and continue their work.

@ Barrier is called reusable, when it can be re-used after the threads are
released.

@ Static barriers have a statically fixed number of participating
tasks/threads.

@ The number of threads can vary at runtime for dynamic barriers.
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Barriers in Ada (Annex D)

package Ada.Synchronous_Barriers is
pragma Preelaborate(Synchronous_Barriers);
subtype Barrier_Limit is Positive range 1 .. implementation-defined;
type Synchronous_Barrier (Release_Threshold : Barrier_Limit) is limited private;
procedure Wait_For_Release (The_Barrier : in out Synchronous_Barrier;
Notified : out Boolean);
private
-- not specified by the language
end Ada.Synchronous_Barriers;
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Barriers in Ada (Annex D)

package Ada.Synchronous_Barriers is
pragma Preelaborate(Synchronous_Barriers);
subtype Barrier_Limit is Positive range 1 .. implementation-defined;
type Synchronous_Barrier (Release_Threshold : Barrier_Limit) is limited private;
procedure Wait_For_Release (The_Barrier : in out Synchronous_Barrier;
Notified : out Boolean);
private
-- not specified by the language
end Ada.Synchronous_Barriers;

Ada’s barriers are static and reusable J
Java has static and dynamic barriers (reusable and non-reuseable) ]
In this paper: only static barriers )

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 13 / 22



Implementation of Barriers

le Barrier Solution using Semaphore

ps
i

mutex . wait ()
count +=1
if count = n:
turnstile2 . wait()
turnstile.signal ()
else # empty
mutex.signal ()

pb2, lock the second
vbl, unlock the first
Tl.a; T2.e

Vs

turnstile . wait () pbl, first turnstile

turnstile.signal () vbl
# critical point Tl.b; T2.f
mutex. wait () ps

count —= 1 d

if count = 0:

turnstile . wait ()
turnstile2.signal ()
else # empty
mutex. signal ()

pbl, lock the first
vb2, unlock the second
Tl.c; T2.g

Vs

turnstile2 . wait ()
turnstile2 .signal ()

pb2, second turnstile
vb2

Fe3k IR I Ik FHRFH O FHRIRIFHIFE OFEH

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 14 / 22



Reusable Barrier Solution using Semaphores

Kronecker Algebra & Barriers in Ada June 16th, 2016 15 / 22
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@ The CPG contains potential deadlock nodes 681,
761, 1774, 1790, 1961 and 2030.
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Reusable Barrier Solution using Semaphores

@ The CPG contains potential deadlock nodes 681,
761, 1774, 1790, 1961 and 2030.

@ The dotted edges are dead paths which can be
ruled out by a value-sensitive (e.g. symbolic)
analysis.

@ Due to these edges some nodes are unreachable
which are colored in red.

@ All potential deadlock nodes are unreachable.
@ Implementation using three semaphores is correct

@ Advanced approaches like symbolic analysis are
needed.
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Implementation of Barriers

n-Reusable Barrier Solution using Semaphores

# rendezvous

mutex . wait ()
count = count + 1
mutex.signal ()

< 0T
) «

if count = n: barrier.signal ()

v, Tl.a; T2.v, T2.x
else # empty

.b; T2.y

barrier.wait ()
barrier.signal ()

3k I III
-
!

<o

# critical point
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Non-Reusable Barrier Solution using Semaphores
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@ Again there are dead paths (the
corresponding edges are dotted).
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Non-Reusable Barrier Solution using Semaphores

@ Again there are dead paths (the
corresponding edges are dotted).

@ Deadlock node (node 181).
@ Paths to node 181 are dead paths.
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Barrier Synchronization Object

size 2 size 3 user user user
barrier object barrier object thread 1 thread 2 thread 3
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Barrier Synchronization Object

size 2 size 3 user user user
barrier object barrier object thread 1 thread 2 thread 3

@ models “semantics of barriers” instead of “implementation”

@ cannot verify implementation
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Barrier Synchronization Object — Example: Two threads
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Barrier Synchronization Object — Example: Two threads

o free of deadlocks
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Barrier Synchronization Object — Example: Two threads

o free of deadlocks

@ no need for value sensitive analysis
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Barrier Synchronization Object — Example: Three threads

o free of deadlocks

@ no need for value sensitive analysis
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Barrier Synchronization Object — Example with Loops

@ Each task contains a loop and a
Wait_For_Release inside the loop.
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@ Each task contains a loop and a
Wait_For_Release inside the loop.

@ If the number of loop iterations is
the same in both tasks, the final
node 61 is reached; otherwise, the
program stalls at nodes 30 or 54.

@ The number of loop iterations
cannot be calculated by the
Kronecker approach.

@ For this purpose e.g. some sort of
symbolic analysis is needed.

@ In the simplest case, only lower and
upper bounds of for-loops have to
be compared.
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Conclusions

@ Kronecker algebra for static analysis of concurrent Ada programs with
reusable static barriers for synchronization.

@ Compared our novel barrier synchronization primitive with a barrier
implementation based on semaphores.

@ Implementations using semaphores require advanced techniques to
find dead paths.

@ Our barrier construct can be analyzed by static analysis only.

@ Need advanced techniques for programs containing loops or
conditional statements.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 22 /22



	Preliminaries and Modelling
	Kronecker Algebra
	Barriers
	Barrier Synchronization Object
	Conclusions

