Kronecker Algebra for Static Analysis of Barriers in Ada

Robert Mittermayr, Johann Blieberger

Institute of Computer Aided Automation
TU Vienna, Austria
{robert,blieb}@auto.tuwien.ac.at

June 16th, 2016

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 1/22

Outline

@ Preliminaries and Modelling

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016

Outline

@ Preliminaries and Modelling

© Kronecker Algebra

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016

Outline

@ Preliminaries and Modelling

© Kronecker Algebra

9 Barriers

Kronecker Algebra & Barriers in Ada June 16th, 2016 2/22

R. Mittermayr, J. Blieberger (TU Vienna)

Outline

@ Preliminaries and Modelling

© Kronecker Algebra

9 Barriers

@ Barrier Synchronization Object

2 /22

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 / 22

Outline

@ Preliminaries and Modelling

© Kronecker Algebra

9 Barriers

@ Barrier Synchronization Object

© Conclusions

2 /22

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 / 22

Preliminaries and Modelling

@ tasks and synchronization primitives represented by control flow
graphs (CFGs)

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 3/22

Preliminaries and Modelling

@ tasks and synchronization primitives represented by control flow
graphs (CFGs)

o CFG stored in form of adjacency matrix

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 3/22

Preliminaries and Modelling

@ tasks and synchronization primitives represented by control flow
graphs (CFGs)

o CFG stored in form of adjacency matrix

o CFG edges labeled by elements of a semiring (compare: automata,
DFAs, regular expressions)

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 3/22

Preliminaries and Modelling

@ tasks and synchronization primitives represented by control flow
graphs (CFGs)
o CFG stored in form of adjacency matrix

o CFG edges labeled by elements of a semiring (compare: automata,
DFAs, regular expressions)

@ set of labels £ = Ly U Ls, where

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 3/22

Preliminaries and Modelling

@ tasks and synchronization primitives represented by control flow
graphs (CFGs)
o CFG stored in form of adjacency matrix
o CFG edges labeled by elements of a semiring (compare: automata,
DFAs, regular expressions)
@ set of labels £ = Ly U Ls, where
e Ly ...set of non-synchronization labels and

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 3/22

Preliminaries and Modelling

@ tasks and synchronization primitives represented by control flow
graphs (CFGs)

o CFG stored in form of adjacency matrix

o CFG edges labeled by elements of a semiring (compare: automata,
DFAs, regular expressions)

@ set of labels £ = Ly U Ls, where

e Ly ...set of non-synchronization labels and
o Lg ...set of labels representing calls to synchronization primitives

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 3/22

Preliminaries and Modelling

@ tasks and synchronization primitives represented by control flow
graphs (CFGs)
o CFG stored in form of adjacency matrix

o CFG edges labeled by elements of a semiring (compare: automata,
DFAs, regular expressions)
@ set of labels £ = Ly U Ls, where

e Ly ...set of non-synchronization labels and
o Lg ...set of labels representing calls to synchronization primitives
e Ly and Lg are disjoint

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 3/22

Preliminaries and Modelling

@ tasks and synchronization primitives represented by control flow
graphs (CFGs)
o CFG stored in form of adjacency matrix

o CFG edges labeled by elements of a semiring (compare: automata,
DFAs, regular expressions)
@ set of labels £ = Ly U Ls, where

e Ly ...set of non-synchronization labels and
o Lg ...set of labels representing calls to synchronization primitives
e Ly and Lg are disjoint

@ matrices out of M = {M = (m; ;)| m;; € L} only.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 3/22

Preliminaries and Modelling

e Edge splitting: for synchronization primitive calls (e.g. p- and v-calls
to semaphores); the only statement on the corresponding (split) edge.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 4 /22

Preliminaries and Modelling

e Edge splitting: for synchronization primitive calls (e.g. p- and v-calls
to semaphores); the only statement on the corresponding (split) edge.
@ system model .. .tuple (T,S, L), where

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 4 /22

Preliminaries and Modelling

e Edge splitting: for synchronization primitive calls (e.g. p- and v-calls
to semaphores); the only statement on the corresponding (split) edge.
@ system model .. .tuple (T,S, L), where
e T ...finite set of CFG adjacency matrices describing tasks,

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 4 /22

Preliminaries and Modelling

e Edge splitting: for synchronization primitive calls (e.g. p- and v-calls
to semaphores); the only statement on the corresponding (split) edge.
@ system model .. .tuple (T,S, L), where

e T ...finite set of CFG adjacency matrices describing tasks,
e S .. .finite set of CFG adjacency matrices describing synchronization
primitives (e.g. semaphores), and

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 4 /22

Preliminaries and Modelling

e Edge splitting: for synchronization primitive calls (e.g. p- and v-calls
to semaphores); the only statement on the corresponding (split) edge.
@ system model .. .tuple (T,S, L), where
e T ...finite set of CFG adjacency matrices describing tasks,
e S .. .finite set of CFG adjacency matrices describing synchronization
primitives (e.g. semaphores), and
e labelsin T € T and S € S ...elements of £ and Lg, respectively.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 4 /22

Preliminaries and Modelling

e Edge splitting: for synchronization primitive calls (e.g. p- and v-calls
to semaphores); the only statement on the corresponding (split) edge.
@ system model .. .tuple (T,S, L), where

e T ...finite set of CFG adjacency matrices describing tasks,
e S .. .finite set of CFG adjacency matrices describing synchronization

primitives (e.g. semaphores), and
e labelsin T € T and S € S ...elements of £ and Lg, respectively.

e Concurrent Program Graph (CPG) ...a graph C = (V| E, ne) with

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 4 /22

Preliminaries and Modelling

e Edge splitting: for synchronization primitive calls (e.g. p- and v-calls
to semaphores); the only statement on the corresponding (split) edge.
@ system model .. .tuple (T,S, L), where

e T ...finite set of CFG adjacency matrices describing tasks,
e S .. .finite set of CFG adjacency matrices describing synchronization

primitives (e.g. semaphores), and
e labelsin T € T and S € S ...elements of £ and Lg, respectively.

e Concurrent Program Graph (CPG) ...a graph C = (V| E, ne) with

e set of nodes V/,

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 4 /22

Preliminaries and Modelling

e Edge splitting: for synchronization primitive calls (e.g. p- and v-calls
to semaphores); the only statement on the corresponding (split) edge.
@ system model .. .tuple (T,S, L), where

e T ...finite set of CFG adjacency matrices describing tasks,
e S .. .finite set of CFG adjacency matrices describing synchronization

primitives (e.g. semaphores), and
e labelsin T € T and S € S ...elements of £ and Lg, respectively.

e Concurrent Program Graph (CPG) ...a graph C = (V| E, ne) with

e set of nodes V/,
o set of directed edges E C V x V, and

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 4 /22

Preliminaries and Modelling

e Edge splitting: for synchronization primitive calls (e.g. p- and v-calls
to semaphores); the only statement on the corresponding (split) edge.
@ system model .. .tuple (T,S, L), where

e T ...finite set of CFG adjacency matrices describing tasks,
e S .. .finite set of CFG adjacency matrices describing synchronization

primitives (e.g. semaphores), and
e labelsin T € T and S € S ...elements of £ and Lg, respectively.

e Concurrent Program Graph (CPG) ...a graph C = (V| E, ne) with

e set of nodes V/,
o set of directed edges E C V x V, and
e so-called entry node n, € V

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 4 /22

Preliminaries and Modelling

e Edge splitting: for synchronization primitive calls (e.g. p- and v-calls
to semaphores); the only statement on the corresponding (split) edge.
@ system model .. .tuple (T,S, L), where
e T ...finite set of CFG adjacency matrices describing tasks,
e S .. .finite set of CFG adjacency matrices describing synchronization
primitives (e.g. semaphores), and
e labelsin T € T and S € S ...elements of £ and Lg, respectively.
e Concurrent Program Graph (CPG) ...a graph C = (V| E, ne) with
e set of nodes V/,
o set of directed edges E C V x V, and
e so-called entry node n, € V

@ sets V and E constructed out of the elements of (7, S, L).

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 4 /22

Kronecker Product

Given an m-by-n matrix A and a p-by-q matrix B, their Kronecker product
A ® B is an mp-by-nq block matrix defined by

a1-B - a, B
AR B =
ami-B -+ amn-B

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 5/22

Kronecker Product

Given an m-by-n matrix A and a p-by-q matrix B, their Kronecker product
A ® B is an mp-by-nq block matrix defined by

a1-B - a, B
A®B=

ami-B -+ amn-B

Given two automata, the Kronecker product synchronously executes them
(lock-step).

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 5/22

Kronecker Sum

Given a matrix A of order m and a matrix B of order n, their Kronecker
sum A @ B is a matrix of order mn defined by

ADB=AL+1,®B

where I, and I, denote identity matrices of order m and n, respectively.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada

June 16th, 2016 6 /22

Kronecker Sum

Given a matrix A of order m and a matrix B of order n, their Kronecker
sum A @ B is a matrix of order mn defined by

where I, and I, denote identity matrices of order m and n, respectively.

@ Kronecker sum calculates all possible interleavings of two concurrently
executing automata

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 6 /22

Kronecker Sum

Given a matrix A of order m and a matrix B of order n, their Kronecker
sum A @ B is a matrix of order mn defined by

where I, and I, denote identity matrices of order m and n, respectively.

@ Kronecker sum calculates all possible interleavings of two concurrently
executing automata

@ even if the automata contain conditionals and loops.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 6 /22

Selective Kronecker Product

@ limits synchronization of the operands to labels | € L C L. J

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016

Selective Kronecker Product

@ limits synchronization of the operands to labels | € L C L. J

Given an m-by-n matrix A and a p-by-q matrix B, we call A©@; B their
selective Kronecker product. For all / € L C L let
Ao B= (3iJ) QL (br,s) = (Ct,u)y where

_ ifajj=brs=1 1€L,
Qi1 ptri-1)a+s = o otherwise.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016

Selective Kronecker Product

@ limits synchronization of the operands to labels | € L C L. J

Given an m-by-n matrix A and a p-by-q matrix B, we call A©@; B their
selective Kronecker product. For all / € L C L let
Ao B= (aiJ) QL (br,s) = (Ct,u)y where

_ / ifai,j:br,szlv lel,
C(i—1)-p+r,(j—1)-g+s = 0 otherwise.

Selective Kronecker product ensures that, e.g., a semaphore p-call in the
left operand is paired with the p-operation in the right operand and not
with any other operation in the right operand. In practice, we usually
constrain L C Ls.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 7/ 22

Filtered Matrix

We call M| a filtered matrix and define it as a matrix of order o(M)
containing entries of L C £ of M = (m;) and zeros elsewhere:

m; ; ifm; ;L
My = (mg;i), where my;;; = { 0 " othelrdwise.7

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016

System Model

The adjacency matrix representing program P is referred to as P (= CPG).

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016

System Model

The adjacency matrix representing program P is referred to as P (= CPG).
P can be efficiently computed by

P=Toc, S+ Tz, ® los)-

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 9 /22

Examples

Initially Unlocked Binary Initially Locked Binary Counting
Semaphore Semaphore Semaphore

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 10 / 22

v op\
®{p,v}<v 0)

o O O O
O O OoOT
O O OT

OoOT < O
O O O O O oo

O OO O O o o o
O OO O oo oo
O OO OCOOOT
O OO OO o oo
O OO OCOOOoOT
O OO OK<K < ©o
O O OT O O oo

0
(a) CFG (b) Matrices

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 11 /22

000 p0p 00O
0O 000 O0OOTUO0OTPO O
p}D\p 0ppo 0000O0GOUVO
000v® v p\ |0 00 0 00 v O
p 000 p|™\v 0/]O00O0OO0O0TO 0P
(1) 0 0 0 O 0 000 O0OOTUOTP OO
0O 00 0O O0OOTUOTPOO
0 000 O0OOTOTPOo
(a) CFG (b) Matrices
PP
1) ©
O, self-deadlock at node 6

v

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 11 /22

Barriers

@ Barrier is a synchronization construct available in most modern
programming languages (e.g. Ada and Java).

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 12 / 22

Barriers

@ Barrier is a synchronization construct available in most modern
programming languages (e.g. Ada and Java).

@ Barrier is used to synchronize a set of n threads.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 12 / 22

Barriers

@ Barrier is a synchronization construct available in most modern
programming languages (e.g. Ada and Java).

@ Barrier is used to synchronize a set of n threads.

@ The first thread(s) reaching the barrier will be blocked.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 12 / 22

Barriers

@ Barrier is a synchronization construct available in most modern
programming languages (e.g. Ada and Java).

@ Barrier is used to synchronize a set of n threads.
@ The first thread(s) reaching the barrier will be blocked.

@ When the nth thread reaches the barrier, all the threads are released
and continue their work.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 12 / 22

Barriers

@ Barrier is a synchronization construct available in most modern
programming languages (e.g. Ada and Java).

@ Barrier is used to synchronize a set of n threads.

@ The first thread(s) reaching the barrier will be blocked.

@ When the nth thread reaches the barrier, all the threads are released
and continue their work.

@ Barrier is called reusable, when it can be re-used after the threads are
released.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 12 / 22

Barriers

@ Barrier is a synchronization construct available in most modern
programming languages (e.g. Ada and Java).

@ Barrier is used to synchronize a set of n threads.
@ The first thread(s) reaching the barrier will be blocked.

@ When the nth thread reaches the barrier, all the threads are released
and continue their work.

@ Barrier is called reusable, when it can be re-used after the threads are
released.

@ Static barriers have a statically fixed number of participating
tasks/threads.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 12 / 22

Barriers

@ Barrier is a synchronization construct available in most modern
programming languages (e.g. Ada and Java).

@ Barrier is used to synchronize a set of n threads.
@ The first thread(s) reaching the barrier will be blocked.

@ When the nth thread reaches the barrier, all the threads are released
and continue their work.

@ Barrier is called reusable, when it can be re-used after the threads are
released.

@ Static barriers have a statically fixed number of participating
tasks/threads.

@ The number of threads can vary at runtime for dynamic barriers.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 12 / 22

Barriers in Ada (Annex D)

package Ada.Synchronous_Barriers is
pragma Preelaborate(Synchronous_Barriers);
subtype Barrier_Limit is Positive range 1 .. implementation-defined;
type Synchronous_Barrier (Release_Threshold : Barrier_Limit) is limited private;
procedure Wait_For_Release (The_Barrier : in out Synchronous_Barrier;
Notified : out Boolean);
private
-- not specified by the language
end Ada.Synchronous_Barriers;

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 13 / 22

Barriers in Ada (Annex D)

package Ada.Synchronous_Barriers is
pragma Preelaborate(Synchronous_Barriers);
subtype Barrier_Limit is Positive range 1 .. implementation-defined;
type Synchronous_Barrier (Release_Threshold : Barrier_Limit) is limited private;
procedure Wait_For_Release (The_Barrier : in out Synchronous_Barrier;
Notified : out Boolean);
private
-- not specified by the language
end Ada.Synchronous_Barriers;

Ada’s barriers are static and reusable J

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 13 / 22

Barriers in Ada (Annex D)

package Ada.Synchronous_Barriers is
pragma Preelaborate(Synchronous_Barriers);
subtype Barrier_Limit is Positive range 1 .. implementation-defined;
type Synchronous_Barrier (Release_Threshold : Barrier_Limit) is limited private;
procedure Wait_For_Release (The_Barrier : in out Synchronous_Barrier;
Notified : out Boolean);
private
-- not specified by the language
end Ada.Synchronous_Barriers;

Ada’s barriers are static and reusable J

Java has static and dynamic barriers (reusable and non-reuseable)]

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 13 / 22

Barriers in Ada (Annex D)

package Ada.Synchronous_Barriers is
pragma Preelaborate(Synchronous_Barriers);
subtype Barrier_Limit is Positive range 1 .. implementation-defined;
type Synchronous_Barrier (Release_Threshold : Barrier_Limit) is limited private;
procedure Wait_For_Release (The_Barrier : in out Synchronous_Barrier;
Notified : out Boolean);
private
-- not specified by the language
end Ada.Synchronous_Barriers;

Ada’s barriers are static and reusable J
Java has static and dynamic barriers (reusable and non-reuseable)]
In this paper: only static barriers)

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 13 / 22

Implementation of Barriers

le Barrier Solution using Semaphore

ps
i

mutex . wait ()
count +=1
if count = n:
turnstile2 . wait()
turnstile.signal ()
else # empty
mutex.signal ()

pb2, lock the second
vbl, unlock the first
Tl.a; T2.e

Vs

turnstile . wait () pbl, first turnstile

turnstile.signal () vbl
critical point Tl.b; T2.f
mutex. wait () ps

count —= 1 d

if count = 0:

turnstile . wait ()
turnstile2.signal ()
else # empty
mutex. signal ()

pbl, lock the first
vb2, unlock the second
Tl.c; T2.g

Vs

turnstile2 . wait ()
turnstile2 .signal ()

pb2, second turnstile
vb2

Fe3k IR I Ik FHRFH O FHRIRIFHIFE OFEH

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 14 / 22

Reusable Barrier Solution using Semaphores

Kronecker Algebra & Barriers in Ada June 16th, 2016 15 / 22

Reusable Barrier Solution using Semaphores

@ The CPG contains potential deadlock nodes 681,
761, 1774, 1790, 1961 and 2030.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 15 / 22

Reusable Barrier Solution using Semaphores

@ The CPG contains potential deadlock nodes 681,
761, 1774, 1790, 1961 and 2030.

@ The dotted edges are dead paths which can be
ruled out by a value-sensitive (e.g. symbolic)
analysis.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 15 / 22

Reusable Barrier Solution using Semaphores

@ The CPG contains potential deadlock nodes 681,
761, 1774, 1790, 1961 and 2030.

@ The dotted edges are dead paths which can be
ruled out by a value-sensitive (e.g. symbolic)
analysis.

@ Due to these edges some nodes are unreachable
which are colored in red.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 15 / 22

Reusable Barrier Solution using Semaphores

@ The CPG contains potential deadlock nodes 681,
761, 1774, 1790, 1961 and 2030.

@ The dotted edges are dead paths which can be
ruled out by a value-sensitive (e.g. symbolic)
analysis.

@ Due to these edges some nodes are unreachable
which are colored in red.

@ All potential deadlock nodes are unreachable.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 15 / 22

Reusable Barrier Solution using Semaphores

@ The CPG contains potential deadlock nodes 681,
761, 1774, 1790, 1961 and 2030.

@ The dotted edges are dead paths which can be
ruled out by a value-sensitive (e.g. symbolic)
analysis.

@ Due to these edges some nodes are unreachable
which are colored in red.

@ All potential deadlock nodes are unreachable.

@ Implementation using three semaphores is correct

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 15 / 22

Reusable Barrier Solution using Semaphores

@ The CPG contains potential deadlock nodes 681,
761, 1774, 1790, 1961 and 2030.

@ The dotted edges are dead paths which can be
ruled out by a value-sensitive (e.g. symbolic)
analysis.

@ Due to these edges some nodes are unreachable
which are colored in red.

@ All potential deadlock nodes are unreachable.
@ Implementation using three semaphores is correct

@ Advanced approaches like symbolic analysis are
needed.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 15 / 22

Implementation of Barriers

n-Reusable Barrier Solution using Semaphores

rendezvous

mutex . wait ()
count = count + 1
mutex.signal ()

< 0T
) «

if count = n: barrier.signal ()

v, Tl.a; T2.v, T2.x
else # empty

.b; T2.y

barrier.wait ()
barrier.signal ()

3k I III
-
!

<o

critical point

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016

Non-Reusable Barrier Solution using Semaphores

Non-Reusable Barrier Solution using Semaphores

@ Again there are dead paths (the
corresponding edges are dotted).

Non-Reusable Barrier Solution using Semaphores

@ Again there are dead paths (the
corresponding edges are dotted).

@ Deadlock node (node 181).

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 17 / 22

Non-Reusable Barrier Solution using Semaphores

@ Again there are dead paths (the
corresponding edges are dotted).

@ Deadlock node (node 181).
@ Paths to node 181 are dead paths.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 17 / 22

Barrier Synchronization Object

size 2 size 3 user user user
barrier object barrier object thread 1 thread 2 thread 3

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 18 / 22

Barrier Synchronization Object

size 2 size 3 user user user
barrier object barrier object thread 1 thread 2 thread 3

@ models “semantics of barriers” instead of “implementation”

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016

Barrier Synchronization Object

size 2 size 3 user user user
barrier object barrier object thread 1 thread 2 thread 3

@ models “semantics of barriers” instead of “implementation”

@ cannot verify implementation

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016

Barrier Synchronization Object — Example: Two threads

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 19 / 22

Barrier Synchronization Object — Example: Two threads

o free of deadlocks

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 19 / 22

Barrier Synchronization Object — Example: Two threads

o free of deadlocks

@ no need for value sensitive analysis

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 19 / 22

(2]
e
(gv]
()
—
L=
4+
[}
(]
bl
=
T
K
o
£
L]
X
L
I
)
O
.e
o)
@)
c
.9
)
(L]
N
c
(©)
bl
=
O
c
>
w
—
(D)
-
—
(T
(a8}

20 / 22

June 16th, 2016

Kronecker Algebra & Barriers in Ada

(TU Vienna)

r, J. Blieberger

R. Mittermay

(2]
e
(gv]
()
—
L=
4+
[}
(]
bl
=
T
K
o
£
L]
X
Ll
I
42
O
L
o)
@)
c
.9
)
(L]
N
c
(©)
bl
=
O
c
>
w
—
(D)
-
—
(T
(a8}

(%]
X
(9
el
e
(9]
()
©
G
o
()
(D)
hut
U
o

20 / 22

June 16th, 2016

©
5]
<
=
o
=
£
44}
<
I
38
o)
0
<
N
5]
~
o]
@
g
X

(TU Vienna)

r, J. Blieberger

R. Mittermay

Barrier Synchronization Object — Example: Three threads

o free of deadlocks

@ no need for value sensitive analysis

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 20/ 22

Barrier Synchronization Object — Example with Loops

@ Each task contains a loop and a
Wait_For_Release inside the loop.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 21 /22

Barrier Synchronization Object — Example with Loops

@ Each task contains a loop and a
Wait_For_Release inside the loop.

@ If the number of loop iterations is
the same in both tasks, the final
node 61 is reached; otherwise, the
program stalls at nodes 30 or 54.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 21 /22

Barrier Synchronization Object — Example with Loops

@ Each task contains a loop and a
Wait_For_Release inside the loop.

@ If the number of loop iterations is
the same in both tasks, the final
node 61 is reached; otherwise, the
program stalls at nodes 30 or 54.

@ The number of loop iterations
cannot be calculated by the
Kronecker approach.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016

Barrier Synchronization Object — Example with Loops

@ Each task contains a loop and a
Wait_For_Release inside the loop.

@ If the number of loop iterations is
the same in both tasks, the final
node 61 is reached; otherwise, the
program stalls at nodes 30 or 54.

@ The number of loop iterations
cannot be calculated by the
Kronecker approach.

@ For this purpose e.g. some sort of
symbolic analysis is needed.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 21 /22

Barrier Synchronization Object — Example with Loops

@ Each task contains a loop and a
Wait_For_Release inside the loop.

@ If the number of loop iterations is
the same in both tasks, the final
node 61 is reached; otherwise, the
program stalls at nodes 30 or 54.

@ The number of loop iterations
cannot be calculated by the
Kronecker approach.

@ For this purpose e.g. some sort of
symbolic analysis is needed.

@ In the simplest case, only lower and
upper bounds of for-loops have to
be compared.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 21 /22

Conclusions

@ Kronecker algebra for static analysis of concurrent Ada programs with
reusable static barriers for synchronization.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 22 /22

Conclusions

@ Kronecker algebra for static analysis of concurrent Ada programs with
reusable static barriers for synchronization.

@ Compared our novel barrier synchronization primitive with a barrier
implementation based on semaphores.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 22 /22

Conclusions

@ Kronecker algebra for static analysis of concurrent Ada programs with
reusable static barriers for synchronization.

@ Compared our novel barrier synchronization primitive with a barrier
implementation based on semaphores.

@ Implementations using semaphores require advanced techniques to
find dead paths.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 22 /22

Conclusions

@ Kronecker algebra for static analysis of concurrent Ada programs with
reusable static barriers for synchronization.

@ Compared our novel barrier synchronization primitive with a barrier
implementation based on semaphores.

@ Implementations using semaphores require advanced techniques to
find dead paths.

@ Our barrier construct can be analyzed by static analysis only.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 22 /22

Conclusions

@ Kronecker algebra for static analysis of concurrent Ada programs with
reusable static barriers for synchronization.

@ Compared our novel barrier synchronization primitive with a barrier
implementation based on semaphores.

@ Implementations using semaphores require advanced techniques to
find dead paths.

@ Our barrier construct can be analyzed by static analysis only.

@ Need advanced techniques for programs containing loops or
conditional statements.

R. Mittermayr, J. Blieberger (TU Vienna) Kronecker Algebra & Barriers in Ada June 16th, 2016 22 /22

	Preliminaries and Modelling
	Kronecker Algebra
	Barriers
	Barrier Synchronization Object
	Conclusions

